* Improved non-latin labels Annotator plotting May resolve https://github.com/ultralytics/yolov5/issues/7460 * Update train.py * Update train.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add progress arg Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>modifyDataloader
@@ -48,13 +48,13 @@ from utils.datasets import create_dataloader | |||
from utils.downloads import attempt_download | |||
from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements, | |||
check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, | |||
intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, | |||
print_args, print_mutation, strip_optimizer) | |||
intersect_dicts, is_ascii, labels_to_class_weights, labels_to_image_weights, methods, | |||
one_cycle, print_args, print_mutation, strip_optimizer) | |||
from utils.loggers import Loggers | |||
from utils.loggers.wandb.wandb_utils import check_wandb_resume | |||
from utils.loss import ComputeLoss | |||
from utils.metrics import fitness | |||
from utils.plots import plot_evolve, plot_labels | |||
from utils.plots import check_font, plot_evolve, plot_labels | |||
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first | |||
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html | |||
@@ -105,6 +105,8 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio | |||
init_seeds(1 + RANK) | |||
with torch_distributed_zero_first(LOCAL_RANK): | |||
data_dict = data_dict or check_dataset(data) # check if None | |||
if not is_ascii(data_dict['names']): # non-latin labels, i.e. asian, arabic, cyrillic | |||
check_font('Arial.Unicode.ttf', progress=True) | |||
train_path, val_path = data_dict['train'], data_dict['val'] | |||
nc = 1 if single_cls else int(data_dict['nc']) # number of classes | |||
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names |
@@ -424,13 +424,13 @@ def check_file(file, suffix=''): | |||
return files[0] # return file | |||
def check_font(font=FONT): | |||
def check_font(font=FONT, progress=False): | |||
# Download font to CONFIG_DIR if necessary | |||
font = Path(font) | |||
if not font.exists() and not (CONFIG_DIR / font.name).exists(): | |||
url = "https://ultralytics.com/assets/" + font.name | |||
LOGGER.info(f'Downloading {url} to {CONFIG_DIR / font.name}...') | |||
torch.hub.download_url_to_file(url, str(font), progress=False) | |||
torch.hub.download_url_to_file(url, str(font), progress=progress) | |||
def check_dataset(data, autodownload=True): |
@@ -19,7 +19,7 @@ import torch | |||
from PIL import Image, ImageDraw, ImageFont | |||
from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords, | |||
increment_path, is_ascii, is_chinese, try_except, xywh2xyxy, xyxy2xywh) | |||
increment_path, is_ascii, try_except, xywh2xyxy, xyxy2xywh) | |||
from utils.metrics import fitness | |||
# Settings | |||
@@ -72,11 +72,12 @@ class Annotator: | |||
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations | |||
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): | |||
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' | |||
self.pil = pil or not is_ascii(example) or is_chinese(example) | |||
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic | |||
self.pil = pil or non_ascii | |||
if self.pil: # use PIL | |||
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) | |||
self.draw = ImageDraw.Draw(self.im) | |||
self.font = check_pil_font(font='Arial.Unicode.ttf' if is_chinese(example) else font, | |||
self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font, | |||
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)) | |||
else: # use cv2 | |||
self.im = im |