Explorar el Código

Update plot_study_txt() (#1533)

5.0
Glenn Jocher GitHub hace 4 años
padre
commit
c9798ae0e1
No se encontró ninguna clave conocida en la base de datos para esta firma ID de clave GPG: 4AEE18F83AFDEB23
Se han modificado 1 ficheros con 5 adiciones y 6 borrados
  1. +5
    -6
      utils/plots.py

+ 5
- 6
utils/plots.py Ver fichero

@@ -1,13 +1,13 @@
# Plotting utils

import glob
import math
import os
import random
from copy import copy
from pathlib import Path

import cv2
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
@@ -218,13 +218,13 @@ def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
plt.savefig('targets.jpg', dpi=200)


def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_study_txt()
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
# Plot study.txt generated by test.py
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
ax = ax.ravel()

fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
for f in ['study/study_coco_%s.txt' % x for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
@@ -234,7 +234,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_st

j = y[3].argmax() + 1
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))

ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
@@ -246,8 +246,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.plots import *; plot_st
ax2.set_xlabel('GPU Speed (ms/img)')
ax2.set_ylabel('COCO AP val')
ax2.legend(loc='lower right')
plt.savefig('study_mAP_latency.png', dpi=300)
plt.savefig(f.replace('.txt', '.png'), dpi=300)
plt.savefig('test_study.png', dpi=300)


def plot_labels(labels, save_dir=''):

Cargando…
Cancelar
Guardar