* Autobatch * fix mem * fix mem2 * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update train.py * print result * Cleanup print result * swap fix in call * to 64 * use total * fix * fix * fix * fix * fix * Update * Update * Update * Update * Update * Update * Update * Cleanup printing * Update final printout * Update autobatch.py * Update autobatch.py * Update autobatch.pymodifyDataloader
@@ -36,6 +36,7 @@ import val # for end-of-epoch mAP | |||
from models.experimental import attempt_load | |||
from models.yolo import Model | |||
from utils.autoanchor import check_anchors | |||
from utils.autobatch import check_train_batch_size | |||
from utils.datasets import create_dataloader | |||
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \ | |||
strip_optimizer, get_latest_run, check_dataset, check_git_status, check_img_size, check_requirements, \ | |||
@@ -131,6 +132,14 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
print(f'freezing {k}') | |||
v.requires_grad = False | |||
# Image size | |||
gs = max(int(model.stride.max()), 32) # grid size (max stride) | |||
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple | |||
# Batch size | |||
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size | |||
batch_size = check_train_batch_size(model, imgsz) | |||
# Optimizer | |||
nbs = 64 # nominal batch size | |||
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing | |||
@@ -190,11 +199,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
del ckpt, csd | |||
# Image sizes | |||
gs = max(int(model.stride.max()), 32) # grid size (max stride) | |||
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) | |||
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple | |||
# DP mode | |||
if cuda and RANK == -1 and torch.cuda.device_count() > 1: | |||
logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n' | |||
@@ -242,6 +246,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) | |||
# Model parameters | |||
nl = model.model[-1].nl # number of detection layers (to scale hyps) | |||
hyp['box'] *= 3. / nl # scale to layers | |||
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers | |||
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers | |||
@@ -440,7 +445,7 @@ def parse_opt(known=False): | |||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') | |||
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path') | |||
parser.add_argument('--epochs', type=int, default=300) | |||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') | |||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') | |||
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') | |||
parser.add_argument('--rect', action='store_true', help='rectangular training') | |||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') |
@@ -0,0 +1,56 @@ | |||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |||
""" | |||
Auto-batch utils | |||
""" | |||
from copy import deepcopy | |||
import numpy as np | |||
import torch | |||
from torch.cuda import amp | |||
from utils.general import colorstr | |||
from utils.torch_utils import profile | |||
def check_train_batch_size(model, imgsz=640): | |||
# Check YOLOv5 training batch size | |||
with amp.autocast(): | |||
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size | |||
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16): | |||
# Automatically estimate best batch size to use `fraction` of available CUDA memory | |||
# Usage: | |||
# import torch | |||
# from utils.autobatch import autobatch | |||
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False) | |||
# print(autobatch(model)) | |||
prefix = colorstr('autobatch: ') | |||
print(f'{prefix}Computing optimal batch size for --imgsz {imgsz}') | |||
device = next(model.parameters()).device # get model device | |||
if device.type == 'cpu': | |||
print(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') | |||
return batch_size | |||
d = str(device).upper() # 'CUDA:0' | |||
t = torch.cuda.get_device_properties(device).total_memory / 1024 ** 3 # (GB) | |||
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GB) | |||
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GB) | |||
f = t - (r + a) # free inside reserved | |||
print(f'{prefix}{d} {t:.3g}G total, {r:.3g}G reserved, {a:.3g}G allocated, {f:.3g}G free') | |||
batch_sizes = [1, 2, 4, 8, 16] | |||
try: | |||
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes] | |||
y = profile(img, model, n=3, device=device) | |||
except Exception as e: | |||
print(f'{prefix}{e}') | |||
y = [x[2] for x in y if x] # memory [2] | |||
batch_sizes = batch_sizes[:len(y)] | |||
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit | |||
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) | |||
print(f'{prefix}Using colorstr(batch-size {b}) for {d} {t * fraction:.3g}G/{t:.3g}G ({fraction * 100:.0f}%)') | |||
return b |
@@ -126,7 +126,7 @@ def profile(input, ops, n=10, device=None): | |||
_ = (sum([yi.sum() for yi in y]) if isinstance(y, list) else y).sum().backward() | |||
t[2] = time_sync() | |||
except Exception as e: # no backward method | |||
print(e) | |||
# print(e) # for debug | |||
t[2] = float('nan') | |||
tf += (t[1] - t[0]) * 1000 / n # ms per op forward | |||
tb += (t[2] - t[1]) * 1000 / n # ms per op backward |