|
|
@@ -35,11 +35,12 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16): |
|
|
|
return batch_size |
|
|
|
|
|
|
|
d = str(device).upper() # 'CUDA:0' |
|
|
|
t = torch.cuda.get_device_properties(device).total_memory / 1024 ** 3 # (GB) |
|
|
|
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GB) |
|
|
|
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GB) |
|
|
|
properties = torch.cuda.get_device_properties(device) # device properties |
|
|
|
t = properties.total_memory / 1024 ** 3 # (GiB) |
|
|
|
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GiB) |
|
|
|
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GiB) |
|
|
|
f = t - (r + a) # free inside reserved |
|
|
|
print(f'{prefix}{d} {t:.3g}G total, {r:.3g}G reserved, {a:.3g}G allocated, {f:.3g}G free') |
|
|
|
print(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') |
|
|
|
|
|
|
|
batch_sizes = [1, 2, 4, 8, 16] |
|
|
|
try: |
|
|
@@ -52,5 +53,5 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16): |
|
|
|
batch_sizes = batch_sizes[:len(y)] |
|
|
|
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit |
|
|
|
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) |
|
|
|
print(f'{prefix}Using batch-size {b} for {d} {t * fraction:.3g}G/{t:.3g}G ({fraction * 100:.0f}%)') |
|
|
|
print(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)') |
|
|
|
return b |