Kaynağa Gözat

Unify the check point of single and multi GPU

save the model.hyp etc to checkpoint when use multi GPU training
5.0
yxNONG GitHub 4 yıl önce
ebeveyn
işleme
cdb9bde181
Veri tabanında bu imza için bilinen anahtar bulunamadı GPC Anahtar Kimliği: 4AEE18F83AFDEB23
1 değiştirilmiş dosya ile 10 ekleme ve 1 silme
  1. +10
    -1
      train.py

+ 10
- 1
train.py Dosyayı Görüntüle

@@ -79,7 +79,7 @@ def train(hyp):
# Create model
model = Model(opt.cfg).to(device)
assert model.md['nc'] == nc, '%s nc=%g classes but %s nc=%g classes' % (opt.data, nc, opt.cfg, model.md['nc'])
model.names = data_dict['names']

# Image sizes
gs = int(max(model.stride)) # grid size (max stride)
@@ -172,6 +172,7 @@ def train(hyp):
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
model.names = data_dict['names']

# Class frequency
labels = np.concatenate(dataset.labels, 0)
@@ -314,6 +315,14 @@ def train(hyp):
# Save model
save = (not opt.nosave) or (final_epoch and not opt.evolve)
if save:
if hasattr(model, 'module'):
# Duplicate Model parameters for Multi-GPU save
ema.ema.module.nc = model.nc # attach number of classes to model
ema.ema.module.hyp = model.hyp # attach hyperparameters to model
ema.ema.module.gr = model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
ema.ema.module.class_weights = model.class_weights # attach class weights
ema.ema.module.names = data_dict['names']
with open(results_file, 'r') as f: # create checkpoint
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,

Yükleniyor…
İptal
Kaydet