Quellcode durchsuchen

PyTorch Hub load directly when possible (#2986)

modifyDataloader
Glenn Jocher GitHub vor 3 Jahren
Ursprung
Commit
d08575ee5e
Es konnte kein GPG-Schlüssel zu dieser Signatur gefunden werden GPG-Schlüssel-ID: 4AEE18F83AFDEB23
1 geänderte Dateien mit 23 neuen und 19 gelöschten Zeilen
  1. +23
    -19
      hubconf.py

+ 23
- 19
hubconf.py Datei anzeigen

@@ -9,7 +9,7 @@ from pathlib import Path

import torch

from models.yolo import Model
from models.yolo import Model, attempt_load
from utils.general import check_requirements, set_logging
from utils.google_utils import attempt_download
from utils.torch_utils import select_device
@@ -26,33 +26,37 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
verbose (bool): print all information to screen

Returns:
pytorch model
YOLOv5 pytorch model
"""
set_logging(verbose=verbose)
fname = f'{name}.pt' # checkpoint filename
try:
set_logging(verbose=verbose)
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
model = Model(cfg, channels, classes)
if pretrained:
fname = f'{name}.pt' # checkpoint filename
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
msd = model.state_dict() # model state_dict
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
model.load_state_dict(csd, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
if autoshape:
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
if pretrained and channels == 3 and classes == 80:
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
else:
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
model = Model(cfg, channels, classes) # create model
if pretrained:
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
msd = model.state_dict() # model state_dict
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
model.load_state_dict(csd, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
if autoshape:
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return model.to(device)

except Exception as e:
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
raise Exception(s) from e



Laden…
Abbrechen
Speichern