|
|
@@ -9,7 +9,7 @@ from pathlib import Path |
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
|
|
from models.yolo import Model |
|
|
|
from models.yolo import Model, attempt_load |
|
|
|
from utils.general import check_requirements, set_logging |
|
|
|
from utils.google_utils import attempt_download |
|
|
|
from utils.torch_utils import select_device |
|
|
@@ -26,33 +26,37 @@ def create(name, pretrained, channels, classes, autoshape, verbose): |
|
|
|
pretrained (bool): load pretrained weights into the model |
|
|
|
channels (int): number of input channels |
|
|
|
classes (int): number of model classes |
|
|
|
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model |
|
|
|
verbose (bool): print all information to screen |
|
|
|
|
|
|
|
Returns: |
|
|
|
pytorch model |
|
|
|
YOLOv5 pytorch model |
|
|
|
""" |
|
|
|
set_logging(verbose=verbose) |
|
|
|
fname = f'{name}.pt' # checkpoint filename |
|
|
|
try: |
|
|
|
set_logging(verbose=verbose) |
|
|
|
|
|
|
|
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path |
|
|
|
model = Model(cfg, channels, classes) |
|
|
|
if pretrained: |
|
|
|
fname = f'{name}.pt' # checkpoint filename |
|
|
|
attempt_download(fname) # download if not found locally |
|
|
|
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load |
|
|
|
msd = model.state_dict() # model state_dict |
|
|
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 |
|
|
|
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter |
|
|
|
model.load_state_dict(csd, strict=False) # load |
|
|
|
if len(ckpt['model'].names) == classes: |
|
|
|
model.names = ckpt['model'].names # set class names attribute |
|
|
|
if autoshape: |
|
|
|
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS |
|
|
|
if pretrained and channels == 3 and classes == 80: |
|
|
|
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model |
|
|
|
else: |
|
|
|
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path |
|
|
|
model = Model(cfg, channels, classes) # create model |
|
|
|
if pretrained: |
|
|
|
attempt_download(fname) # download if not found locally |
|
|
|
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load |
|
|
|
msd = model.state_dict() # model state_dict |
|
|
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 |
|
|
|
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter |
|
|
|
model.load_state_dict(csd, strict=False) # load |
|
|
|
if len(ckpt['model'].names) == classes: |
|
|
|
model.names = ckpt['model'].names # set class names attribute |
|
|
|
if autoshape: |
|
|
|
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS |
|
|
|
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available |
|
|
|
return model.to(device) |
|
|
|
|
|
|
|
except Exception as e: |
|
|
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36' |
|
|
|
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url |
|
|
|
s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url |
|
|
|
raise Exception(s) from e |
|
|
|
|
|
|
|
|