|
|
@@ -134,6 +134,7 @@ class Model(nn.Module): |
|
|
|
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save |
|
|
|
yi = self._descale_pred(yi, fi, si, img_size) |
|
|
|
y.append(yi) |
|
|
|
y = self._clip_augmented(y) # clip augmented tails |
|
|
|
return torch.cat(y, 1), None # augmented inference, train |
|
|
|
|
|
|
|
def _forward_once(self, x, profile=False, visualize=False): |
|
|
@@ -166,6 +167,17 @@ class Model(nn.Module): |
|
|
|
p = torch.cat((x, y, wh, p[..., 4:]), -1) |
|
|
|
return p |
|
|
|
|
|
|
|
def _clip_augmented(self, y): |
|
|
|
# Clip YOLOv5 augmented inference tails |
|
|
|
nl = self.model[-1].nl # number of detection layers (P3-P5) |
|
|
|
g = sum(4 ** x for x in range(nl)) # grid points |
|
|
|
e = 1 # exclude layer count |
|
|
|
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices |
|
|
|
y[0] = y[0][:, :-i] # large |
|
|
|
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices |
|
|
|
y[-1] = y[-1][:, i:] # small |
|
|
|
return y |
|
|
|
|
|
|
|
def _profile_one_layer(self, m, x, dt): |
|
|
|
c = isinstance(m, Detect) # is final layer, copy input as inplace fix |
|
|
|
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs |