|
|
@@ -222,11 +222,11 @@ def test(data, |
|
|
|
|
|
|
|
# Save JSON |
|
|
|
if save_json and len(jdict): |
|
|
|
f = 'detections_val2017_%s_results.json' % \ |
|
|
|
(weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename |
|
|
|
print('\nCOCO mAP with pycocotools... saving %s...' % f) |
|
|
|
with open(f, 'w') as file: |
|
|
|
json.dump(jdict, file) |
|
|
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights |
|
|
|
file = save_dir / f"detections_val2017_{w}_results.json" # predicted annotations file |
|
|
|
print('\nCOCO mAP with pycocotools... saving %s...' % file) |
|
|
|
with open(file, 'w') as f: |
|
|
|
json.dump(jdict, f) |
|
|
|
|
|
|
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb |
|
|
|
from pycocotools.coco import COCO |
|
|
@@ -234,7 +234,7 @@ def test(data, |
|
|
|
|
|
|
|
imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] |
|
|
|
cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api |
|
|
|
cocoDt = cocoGt.loadRes(f) # initialize COCO pred api |
|
|
|
cocoDt = cocoGt.loadRes(str(file)) # initialize COCO pred api |
|
|
|
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') |
|
|
|
cocoEval.params.imgIds = imgIds # image IDs to evaluate |
|
|
|
cocoEval.evaluate() |