Browse Source

Validate `best.pt` on train end (#4889)

* Validate best.pt on train end

* 0.7 iou for COCO only

* pass callbacks

* active model.float() if not half

* print Validating best.pt...

* add newline
modifyDataloader
Glenn Jocher GitHub 3 years ago
parent
commit
d856c48298
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 14 additions and 16 deletions
  1. +13
    -14
      train.py
  2. +1
    -2
      val.py

+ 13
- 14
train.py View File

single_cls=single_cls, single_cls=single_cls,
dataloader=val_loader, dataloader=val_loader,
save_dir=save_dir, save_dir=save_dir,
save_json=is_coco and final_epoch,
verbose=nc < 50 and final_epoch,
plots=plots and final_epoch,
plots=False,
callbacks=callbacks, callbacks=callbacks,
compute_loss=compute_loss) compute_loss=compute_loss)


# end training ----------------------------------------------------------------------------------------------------- # end training -----------------------------------------------------------------------------------------------------
if RANK in [-1, 0]: if RANK in [-1, 0]:
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
if not evolve:
if is_coco: # COCO dataset
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is best:
LOGGER.info(f'\nValidating {f}...')
results, _, _ = val.run(data_dict, results, _, _ = val.run(data_dict,
batch_size=batch_size // WORLD_SIZE * 2, batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz, imgsz=imgsz,
model=attempt_load(m, device).half(),
iou_thres=0.7, # NMS IoU threshold for best pycocotools results
model=attempt_load(f, device).half(),
iou_thres=0.7 if is_coco else 0.6, # best pycocotools results at 0.7
single_cls=single_cls, single_cls=single_cls,
dataloader=val_loader, dataloader=val_loader,
save_dir=save_dir, save_dir=save_dir,
save_json=True,
plots=False)
# Strip optimizers
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
save_json=is_coco,
verbose=True,
plots=True,
callbacks=callbacks) # val best model with plots

callbacks.run('on_train_end', last, best, plots, epoch) callbacks.run('on_train_end', last, best, plots, epoch)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")



+ 1
- 2
val.py View File



# Half # Half
half &= device.type != 'cpu' # half precision only supported on CUDA half &= device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half()
model.half() if half else model.float()


# Configure # Configure
model.eval() model.eval()

Loading…
Cancel
Save