|
|
@@ -29,13 +29,12 @@ from tqdm import tqdm |
|
|
|
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective |
|
|
|
from utils.general import (LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str, |
|
|
|
segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn) |
|
|
|
from utils.torch_utils import device_count, torch_distributed_zero_first |
|
|
|
from utils.torch_utils import torch_distributed_zero_first |
|
|
|
|
|
|
|
# Parameters |
|
|
|
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' |
|
|
|
IMG_FORMATS = ['bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp'] # include image suffixes |
|
|
|
VID_FORMATS = ['asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'wmv'] # include video suffixes |
|
|
|
DEVICE_COUNT = max(device_count(), 1) # number of CUDA devices |
|
|
|
|
|
|
|
# Get orientation exif tag |
|
|
|
for orientation in ExifTags.TAGS.keys(): |
|
|
@@ -110,7 +109,8 @@ def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=Non |
|
|
|
prefix=prefix) |
|
|
|
|
|
|
|
batch_size = min(batch_size, len(dataset)) |
|
|
|
nw = min([os.cpu_count() // DEVICE_COUNT, batch_size if batch_size > 1 else 0, workers]) # number of workers |
|
|
|
nd = torch.cuda.device_count() # number of CUDA devices |
|
|
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers |
|
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) |
|
|
|
loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates |
|
|
|
return loader(dataset, |