Selaa lähdekoodia

Add xywhn2xyxy() (#1983)

5.0
Glenn Jocher GitHub 3 vuotta sitten
vanhempi
commit
d9212140b3
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 muutettua tiedostoa jossa 20 lisäystä ja 25 poistoa
  1. +10
    -25
      utils/datasets.py
  2. +10
    -0
      utils/general.py

+ 10
- 25
utils/datasets.py Näytä tiedosto

@@ -20,7 +20,7 @@ from PIL import Image, ExifTags
from torch.utils.data import Dataset
from tqdm import tqdm

from utils.general import xyxy2xywh, xywh2xyxy, clean_str
from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, clean_str
from utils.torch_utils import torch_distributed_zero_first

# Parameters
@@ -515,16 +515,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling

# Load labels
labels = []
x = self.labels[index]
if x.size > 0:
# Normalized xywh to pixel xyxy format
labels = x.copy()
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
labels = self.labels[index].copy()
if labels.size: # normalized xywh to pixel xyxy format
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])

if self.augment:
# Augment imagespace
@@ -674,13 +667,9 @@ def load_mosaic(self, index):
padh = y1a - y1b

# Labels
x = self.labels[index]
labels = x.copy()
if x.size > 0: # Normalized xywh to pixel xyxy format
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
labels = self.labels[index].copy()
if labels.size:
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
labels4.append(labels)

# Concat/clip labels
@@ -737,13 +726,9 @@ def load_mosaic9(self, index):
x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords

# Labels
x = self.labels[index]
labels = x.copy()
if x.size > 0: # Normalized xywh to pixel xyxy format
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padx
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + pady
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padx
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + pady
labels = self.labels[index].copy()
if labels.size:
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
labels9.append(labels)

# Image

+ 10
- 0
utils/general.py Näytä tiedosto

@@ -223,6 +223,16 @@ def xywh2xyxy(x):
return y


def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
return y


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape

Loading…
Peruuta
Tallenna