* Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Add TensorFlow and TFLite Detection * Add --tfl-detect for TFLite Detection * Add int8 quantized TFLite inference in detect.py * Add --edgetpu for Edge TPU detection * Fix --img-size to add rectangle TensorFlow and TFLite input * Add --no-tf-nms to detect objects using models combined with TensorFlow NMS * Fix --img-size list type input * Update README.md * Add Android project for TFLite inference * Upgrade TensorFlow v2.3.1 -> v2.4.0 * Disable normalization of xywh * Rewrite names init in detect.py * Change input resolution 640 -> 320 on Android * Disable NNAPI * Update README.me --img 640 -> 320 * Update README.me for Edge TPU * Update README.md * Fix reshape dim to support dynamic batching * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Remove android directory * Update README.md * Update README.md * Add multiple OS support for EdgeTPU detection * Fix export and detect * Export 3 YOLO heads with Edge TPU models * Remove xywh denormalization with Edge TPU models in detect.py * Fix saved_model and pb detect error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix pre-commit.ci failure * Add edgetpu in export.py docstring * Fix Edge TPU model detection exported by TF 2.7 * Add class names for TF/TFLite in DetectMultibackend * Fix assignment with nl in TFLite Detection * Add check when getting Edge TPU compiler version * Add UTF-8 encoding in opening --data file for Windows * Remove redundant TensorFlow import * Add Edge TPU in export.py's docstring * Add the detect layer in Edge TPU model conversion * Default `dnn=False` * Cleanup data.yaml loading * Update detect.py * Update val.py * Comments and generalize data.yaml names Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: unknown <fangjiacong@ut.cn> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>modifyDataloader
@@ -38,6 +38,7 @@ from utils.torch_utils import select_device, time_sync | |||
@torch.no_grad() | |||
def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) | |||
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam | |||
data=ROOT / 'data/coco128.yaml', # dataset.yaml path | |||
imgsz=(640, 640), # inference size (height, width) | |||
conf_thres=0.25, # confidence threshold | |||
iou_thres=0.45, # NMS IOU threshold | |||
@@ -76,7 +77,7 @@ def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) | |||
# Load model | |||
device = select_device(device) | |||
model = DetectMultiBackend(weights, device=device, dnn=dnn) | |||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data) | |||
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine | |||
imgsz = check_img_size(imgsz, s=stride) # check image size | |||
@@ -204,6 +205,7 @@ def parse_opt(): | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') | |||
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam') | |||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') | |||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') | |||
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') | |||
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') |
@@ -248,6 +248,24 @@ def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('Te | |||
LOGGER.info(f'\n{prefix} export failure: {e}') | |||
def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')): | |||
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ | |||
try: | |||
cmd = 'edgetpu_compiler --version' | |||
out = subprocess.run(cmd, shell=True, capture_output=True, check=True) | |||
ver = out.stdout.decode().split()[-1] | |||
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') | |||
f = str(file).replace('.pt', '-int8_edgetpu.tflite') | |||
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model | |||
cmd = f"edgetpu_compiler -s {f_tfl}" | |||
subprocess.run(cmd, shell=True, check=True) | |||
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') | |||
except Exception as e: | |||
LOGGER.info(f'\n{prefix} export failure: {e}') | |||
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): | |||
# YOLOv5 TensorFlow.js export | |||
try: | |||
@@ -285,6 +303,7 @@ def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): | |||
def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): | |||
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt | |||
try: | |||
check_requirements(('tensorrt',)) | |||
import tensorrt as trt | |||
@@ -356,7 +375,7 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' | |||
): | |||
t = time.time() | |||
include = [x.lower() for x in include] | |||
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports | |||
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports | |||
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) | |||
# Checks | |||
@@ -405,15 +424,17 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' | |||
# TensorFlow Exports | |||
if any(tf_exports): | |||
pb, tflite, tfjs = tf_exports[1:] | |||
pb, tflite, edgetpu, tfjs = tf_exports[1:] | |||
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.' | |||
model = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs, | |||
agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all, | |||
conf_thres=conf_thres, iou_thres=iou_thres) # keras model | |||
if pb or tfjs: # pb prerequisite to tfjs | |||
export_pb(model, im, file) | |||
if tflite: | |||
export_tflite(model, im, file, int8=int8, data=data, ncalib=100) | |||
if tflite or edgetpu: | |||
export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100) | |||
if edgetpu: | |||
export_edgetpu(model, im, file) | |||
if tfjs: | |||
export_tfjs(model, im, file) | |||
@@ -17,6 +17,7 @@ import pandas as pd | |||
import requests | |||
import torch | |||
import torch.nn as nn | |||
import yaml | |||
from PIL import Image | |||
from torch.cuda import amp | |||
@@ -276,7 +277,7 @@ class Concat(nn.Module): | |||
class DetectMultiBackend(nn.Module): | |||
# YOLOv5 MultiBackend class for python inference on various backends | |||
def __init__(self, weights='yolov5s.pt', device=None, dnn=False): | |||
def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None): | |||
# Usage: | |||
# PyTorch: weights = *.pt | |||
# TorchScript: *.torchscript | |||
@@ -284,6 +285,7 @@ class DetectMultiBackend(nn.Module): | |||
# TensorFlow: *_saved_model | |||
# TensorFlow: *.pb | |||
# TensorFlow Lite: *.tflite | |||
# TensorFlow Edge TPU: *_edgetpu.tflite | |||
# ONNX Runtime: *.onnx | |||
# OpenCV DNN: *.onnx with dnn=True | |||
# TensorRT: *.engine | |||
@@ -297,6 +299,9 @@ class DetectMultiBackend(nn.Module): | |||
pt, jit, onnx, engine, tflite, pb, saved_model, coreml = (suffix == x for x in suffixes) # backend booleans | |||
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults | |||
w = attempt_download(w) # download if not local | |||
if data: # data.yaml path (optional) | |||
with open(data, errors='ignore') as f: | |||
names = yaml.safe_load(f)['names'] # class names | |||
if jit: # TorchScript | |||
LOGGER.info(f'Loading {w} for TorchScript inference...') | |||
@@ -343,7 +348,7 @@ class DetectMultiBackend(nn.Module): | |||
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) | |||
context = model.create_execution_context() | |||
batch_size = bindings['images'].shape[0] | |||
else: # TensorFlow model (TFLite, pb, saved_model) | |||
else: # TensorFlow (TFLite, pb, saved_model) | |||
if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt | |||
LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...') | |||
import tensorflow as tf | |||
@@ -425,6 +430,7 @@ class DetectMultiBackend(nn.Module): | |||
y[..., 1] *= h # y | |||
y[..., 2] *= w # w | |||
y[..., 3] *= h # h | |||
y = torch.tensor(y) if isinstance(y, np.ndarray) else y | |||
return (y, []) if val else y | |||
@@ -124,7 +124,7 @@ def run(data, | |||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | |||
# Load model | |||
model = DetectMultiBackend(weights, device=device, dnn=dnn) | |||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data) | |||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine | |||
imgsz = check_img_size(imgsz, s=stride) # check image size | |||
half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA |