Browse Source

Add EdgeTPU support (#3630)

* Add models/tf.py for TensorFlow and TFLite export

* Set auto=False for int8 calibration

* Update requirements.txt for TensorFlow and TFLite export

* Read anchors directly from PyTorch weights

* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export

* Remove check_anchor_order, check_file, set_logging from import

* Reformat code and optimize imports

* Autodownload model and check cfg

* update --source path, img-size to 320, single output

* Adjust representative_dataset

* Put representative dataset in tfl_int8 block

* detect.py TF inference

* weights to string

* weights to string

* cleanup tf.py

* Add --dynamic-batch-size

* Add xywh normalization to reduce calibration error

* Update requirements.txt

TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error

* Fix imports

Move C3 from models.experimental to models.common

* Add models/tf.py for TensorFlow and TFLite export

* Set auto=False for int8 calibration

* Update requirements.txt for TensorFlow and TFLite export

* Read anchors directly from PyTorch weights

* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export

* Remove check_anchor_order, check_file, set_logging from import

* Reformat code and optimize imports

* Autodownload model and check cfg

* update --source path, img-size to 320, single output

* Adjust representative_dataset

* detect.py TF inference

* Put representative dataset in tfl_int8 block

* weights to string

* weights to string

* cleanup tf.py

* Add --dynamic-batch-size

* Add xywh normalization to reduce calibration error

* Update requirements.txt

TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error

* Fix imports

Move C3 from models.experimental to models.common

* implement C3() and SiLU()

* Add TensorFlow and TFLite Detection

* Add --tfl-detect for TFLite Detection

* Add int8 quantized TFLite inference in detect.py

* Add --edgetpu for Edge TPU detection

* Fix --img-size to add rectangle TensorFlow and TFLite input

* Add --no-tf-nms to detect objects using models combined with TensorFlow NMS

* Fix --img-size list type input

* Update README.md

* Add Android project for TFLite inference

* Upgrade TensorFlow v2.3.1 -> v2.4.0

* Disable normalization of xywh

* Rewrite names init in detect.py

* Change input resolution 640 -> 320 on Android

* Disable NNAPI

* Update README.me --img 640 -> 320

* Update README.me for Edge TPU

* Update README.md

* Fix reshape dim to support dynamic batching

* Fix reshape dim to support dynamic batching

* Add epsilon argument in tf_BN, which is different between TF and PT

* Set stride to None if not using PyTorch, and do not warmup without PyTorch

* Add list support in check_img_size()

* Add list input support in detect.py

* sys.path.append('./') to run from yolov5/

* Add int8 quantization support for TensorFlow 2.5

* Add get_coco128.sh

* Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU)

* Update requirements.txt

* Replace torch.load() with attempt_load()

* Update requirements.txt

* Add --tf-raw-resize to set half_pixel_centers=False

* Remove android directory

* Update README.md

* Update README.md

* Add multiple OS support for EdgeTPU detection

* Fix export and detect

* Export 3 YOLO heads with Edge TPU models

* Remove xywh denormalization with Edge TPU models in detect.py

* Fix saved_model and pb detect error

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix pre-commit.ci failure

* Add edgetpu in export.py docstring

* Fix Edge TPU model detection exported by TF 2.7

* Add class names for TF/TFLite in DetectMultibackend

* Fix assignment with nl in TFLite Detection

* Add check when getting Edge TPU compiler version

* Add UTF-8 encoding in opening --data file for Windows

* Remove redundant TensorFlow import

* Add Edge TPU in export.py's docstring

* Add the detect layer in Edge TPU model conversion

* Default `dnn=False`

* Cleanup data.yaml loading

* Update detect.py

* Update val.py

* Comments and generalize data.yaml names

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: unknown <fangjiacong@ut.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
modifyDataloader
Jiacong Fang GitHub 2 years ago
parent
commit
d95978a562
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 37 additions and 8 deletions
  1. +3
    -1
      detect.py
  2. +25
    -4
      export.py
  3. +8
    -2
      models/common.py
  4. +1
    -1
      val.py

+ 3
- 1
detect.py View File

@torch.no_grad() @torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width) imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold iou_thres=0.45, # NMS IOU threshold


# Load model # Load model
device = select_device(device) device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size imgsz = check_img_size(imgsz, s=stride) # check image size


parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam') parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')

+ 25
- 4
export.py View File

LOGGER.info(f'\n{prefix} export failure: {e}') LOGGER.info(f'\n{prefix} export failure: {e}')




def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')):
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
try:
cmd = 'edgetpu_compiler --version'
out = subprocess.run(cmd, shell=True, capture_output=True, check=True)
ver = out.stdout.decode().split()[-1]
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
f = str(file).replace('.pt', '-int8_edgetpu.tflite')
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model

cmd = f"edgetpu_compiler -s {f_tfl}"
subprocess.run(cmd, shell=True, check=True)

LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')


def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
# YOLOv5 TensorFlow.js export # YOLOv5 TensorFlow.js export
try: try:




def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
try: try:
check_requirements(('tensorrt',)) check_requirements(('tensorrt',))
import tensorrt as trt import tensorrt as trt
): ):
t = time.time() t = time.time()
include = [x.lower() for x in include] include = [x.lower() for x in include]
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)


# Checks # Checks


# TensorFlow Exports # TensorFlow Exports
if any(tf_exports): if any(tf_exports):
pb, tflite, tfjs = tf_exports[1:]
pb, tflite, edgetpu, tfjs = tf_exports[1:]
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.' assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
model = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs, model = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all, agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all,
conf_thres=conf_thres, iou_thres=iou_thres) # keras model conf_thres=conf_thres, iou_thres=iou_thres) # keras model
if pb or tfjs: # pb prerequisite to tfjs if pb or tfjs: # pb prerequisite to tfjs
export_pb(model, im, file) export_pb(model, im, file)
if tflite:
export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
if tflite or edgetpu:
export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
if edgetpu:
export_edgetpu(model, im, file)
if tfjs: if tfjs:
export_tfjs(model, im, file) export_tfjs(model, im, file)



+ 8
- 2
models/common.py View File

import requests import requests
import torch import torch
import torch.nn as nn import torch.nn as nn
import yaml
from PIL import Image from PIL import Image
from torch.cuda import amp from torch.cuda import amp




class DetectMultiBackend(nn.Module): class DetectMultiBackend(nn.Module):
# YOLOv5 MultiBackend class for python inference on various backends # YOLOv5 MultiBackend class for python inference on various backends
def __init__(self, weights='yolov5s.pt', device=None, dnn=False):
def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None):
# Usage: # Usage:
# PyTorch: weights = *.pt # PyTorch: weights = *.pt
# TorchScript: *.torchscript # TorchScript: *.torchscript
# TensorFlow: *_saved_model # TensorFlow: *_saved_model
# TensorFlow: *.pb # TensorFlow: *.pb
# TensorFlow Lite: *.tflite # TensorFlow Lite: *.tflite
# TensorFlow Edge TPU: *_edgetpu.tflite
# ONNX Runtime: *.onnx # ONNX Runtime: *.onnx
# OpenCV DNN: *.onnx with dnn=True # OpenCV DNN: *.onnx with dnn=True
# TensorRT: *.engine # TensorRT: *.engine
pt, jit, onnx, engine, tflite, pb, saved_model, coreml = (suffix == x for x in suffixes) # backend booleans pt, jit, onnx, engine, tflite, pb, saved_model, coreml = (suffix == x for x in suffixes) # backend booleans
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
w = attempt_download(w) # download if not local w = attempt_download(w) # download if not local
if data: # data.yaml path (optional)
with open(data, errors='ignore') as f:
names = yaml.safe_load(f)['names'] # class names


if jit: # TorchScript if jit: # TorchScript
LOGGER.info(f'Loading {w} for TorchScript inference...') LOGGER.info(f'Loading {w} for TorchScript inference...')
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
context = model.create_execution_context() context = model.create_execution_context()
batch_size = bindings['images'].shape[0] batch_size = bindings['images'].shape[0]
else: # TensorFlow model (TFLite, pb, saved_model)
else: # TensorFlow (TFLite, pb, saved_model)
if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...') LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...')
import tensorflow as tf import tensorflow as tf
y[..., 1] *= h # y y[..., 1] *= h # y
y[..., 2] *= w # w y[..., 2] *= w # w
y[..., 3] *= h # h y[..., 3] *= h # h

y = torch.tensor(y) if isinstance(y, np.ndarray) else y y = torch.tensor(y) if isinstance(y, np.ndarray) else y
return (y, []) if val else y return (y, []) if val else y



+ 1
- 1
val.py View File

(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir


# Load model # Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size imgsz = check_img_size(imgsz, s=stride) # check image size
half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA

Loading…
Cancel
Save