|
|
@@ -95,7 +95,7 @@ def test(data, |
|
|
|
confusion_matrix = ConfusionMatrix(nc=nc) |
|
|
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} |
|
|
|
coco91class = coco80_to_coco91_class() |
|
|
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|
|
|
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|
|
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|
|
|
loss = torch.zeros(3, device=device) |
|
|
|
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] |
|
|
@@ -228,7 +228,7 @@ def test(data, |
|
|
|
nt = torch.zeros(1) |
|
|
|
|
|
|
|
# Print results |
|
|
|
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format |
|
|
|
pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format |
|
|
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|
|
|
|
|
|
|
# Print results per class |