|
|
@@ -1,7 +1,7 @@ |
|
|
|
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats |
|
|
|
"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats |
|
|
|
|
|
|
|
Usage: |
|
|
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights yolov5s.pt --img 640 --batch 1 |
|
|
|
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1 |
|
|
|
""" |
|
|
|
|
|
|
|
import argparse |
|
|
@@ -27,6 +27,7 @@ if __name__ == '__main__': |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width |
|
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
|
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
|
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats') |
|
|
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export') |
|
|
|
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') |
|
|
|
parser.add_argument('--train', action='store_true', help='model.train() mode') |
|
|
@@ -35,6 +36,7 @@ if __name__ == '__main__': |
|
|
|
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only |
|
|
|
opt = parser.parse_args() |
|
|
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand |
|
|
|
opt.include = [x.lower() for x in opt.include] |
|
|
|
print(opt) |
|
|
|
set_logging() |
|
|
|
t = time.time() |
|
|
@@ -47,7 +49,7 @@ if __name__ == '__main__': |
|
|
|
# Checks |
|
|
|
gs = int(max(model.stride)) # grid size (max stride) |
|
|
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples |
|
|
|
assert not (opt.device.lower() == "cpu" and opt.half), '--half only compatible with GPU export, i.e. use --device 0' |
|
|
|
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0' |
|
|
|
|
|
|
|
# Input |
|
|
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection |
|
|
@@ -74,62 +76,66 @@ if __name__ == '__main__': |
|
|
|
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)") |
|
|
|
|
|
|
|
# TorchScript export ----------------------------------------------------------------------------------------------- |
|
|
|
prefix = colorstr('TorchScript:') |
|
|
|
try: |
|
|
|
print(f'\n{prefix} starting export with torch {torch.__version__}...') |
|
|
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename |
|
|
|
ts = torch.jit.trace(model, img, strict=False) |
|
|
|
(optimize_for_mobile(ts) if opt.optimize else ts).save(f) |
|
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} export failure: {e}') |
|
|
|
if 'torchscript' in opt.include or 'coreml' in opt.include: |
|
|
|
prefix = colorstr('TorchScript:') |
|
|
|
try: |
|
|
|
print(f'\n{prefix} starting export with torch {torch.__version__}...') |
|
|
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename |
|
|
|
ts = torch.jit.trace(model, img, strict=False) |
|
|
|
(optimize_for_mobile(ts) if opt.optimize else ts).save(f) |
|
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} export failure: {e}') |
|
|
|
|
|
|
|
# ONNX export ------------------------------------------------------------------------------------------------------ |
|
|
|
prefix = colorstr('ONNX:') |
|
|
|
try: |
|
|
|
import onnx |
|
|
|
|
|
|
|
print(f'{prefix} starting export with onnx {onnx.__version__}...') |
|
|
|
f = opt.weights.replace('.pt', '.onnx') # filename |
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], |
|
|
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) |
|
|
|
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) |
|
|
|
|
|
|
|
# Checks |
|
|
|
model_onnx = onnx.load(f) # load onnx model |
|
|
|
onnx.checker.check_model(model_onnx) # check onnx model |
|
|
|
# print(onnx.helper.printable_graph(model_onnx.graph)) # print |
|
|
|
|
|
|
|
# Simplify |
|
|
|
if opt.simplify: |
|
|
|
try: |
|
|
|
check_requirements(['onnx-simplifier']) |
|
|
|
import onnxsim |
|
|
|
|
|
|
|
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') |
|
|
|
model_onnx, check = onnxsim.simplify(model_onnx, |
|
|
|
dynamic_input_shape=opt.dynamic, |
|
|
|
input_shapes={'images': list(img.shape)} if opt.dynamic else None) |
|
|
|
assert check, 'assert check failed' |
|
|
|
onnx.save(model_onnx, f) |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} simplifier failure: {e}') |
|
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} export failure: {e}') |
|
|
|
if 'onnx' in opt.include: |
|
|
|
prefix = colorstr('ONNX:') |
|
|
|
try: |
|
|
|
import onnx |
|
|
|
|
|
|
|
print(f'{prefix} starting export with onnx {onnx.__version__}...') |
|
|
|
f = opt.weights.replace('.pt', '.onnx') # filename |
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], |
|
|
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) |
|
|
|
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) |
|
|
|
|
|
|
|
# Checks |
|
|
|
model_onnx = onnx.load(f) # load onnx model |
|
|
|
onnx.checker.check_model(model_onnx) # check onnx model |
|
|
|
# print(onnx.helper.printable_graph(model_onnx.graph)) # print |
|
|
|
|
|
|
|
# Simplify |
|
|
|
if opt.simplify: |
|
|
|
try: |
|
|
|
check_requirements(['onnx-simplifier']) |
|
|
|
import onnxsim |
|
|
|
|
|
|
|
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') |
|
|
|
model_onnx, check = onnxsim.simplify( |
|
|
|
model_onnx, |
|
|
|
dynamic_input_shape=opt.dynamic, |
|
|
|
input_shapes={'images': list(img.shape)} if opt.dynamic else None) |
|
|
|
assert check, 'assert check failed' |
|
|
|
onnx.save(model_onnx, f) |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} simplifier failure: {e}') |
|
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} export failure: {e}') |
|
|
|
|
|
|
|
# CoreML export ---------------------------------------------------------------------------------------------------- |
|
|
|
prefix = colorstr('CoreML:') |
|
|
|
try: |
|
|
|
import coremltools as ct |
|
|
|
|
|
|
|
print(f'{prefix} starting export with coremltools {ct.__version__}...') |
|
|
|
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) |
|
|
|
f = opt.weights.replace('.pt', '.mlmodel') # filename |
|
|
|
model.save(f) |
|
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} export failure: {e}') |
|
|
|
if 'coreml' in opt.include: |
|
|
|
prefix = colorstr('CoreML:') |
|
|
|
try: |
|
|
|
import coremltools as ct |
|
|
|
|
|
|
|
print(f'{prefix} starting export with coremltools {ct.__version__}...') |
|
|
|
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) |
|
|
|
f = opt.weights.replace('.pt', '.mlmodel') # filename |
|
|
|
model.save(f) |
|
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} export failure: {e}') |
|
|
|
|
|
|
|
# Finish |
|
|
|
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.') |