* track batch size after autobatch * remove redundant import * Update __init__.py * Update __init__.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>modifyDataloader
@@ -138,6 +138,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
# Batch size | |||
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size | |||
batch_size = check_train_batch_size(model, imgsz) | |||
loggers.on_params_update({"batch_size": batch_size}) | |||
# Optimizer | |||
nbs = 64 # nominal batch size |
@@ -32,7 +32,7 @@ class Callbacks: | |||
'on_fit_epoch_end': [], # fit = train + val | |||
'on_model_save': [], | |||
'on_train_end': [], | |||
'on_params_update': [], | |||
'teardown': [], | |||
} | |||
@@ -157,3 +157,9 @@ class Loggers(): | |||
else: | |||
self.wandb.finish_run() | |||
self.wandb = WandbLogger(self.opt) | |||
def on_params_update(self, params): | |||
# Update hyperparams or configs of the experiment | |||
# params: A dict containing {param: value} pairs | |||
if self.wandb: | |||
self.wandb.wandb_run.config.update(params, allow_val_change=True) |