|
|
@@ -45,30 +45,8 @@ class Colors: |
|
|
|
colors = Colors() # create instance for 'from utils.plots import colors' |
|
|
|
|
|
|
|
|
|
|
|
def hist2d(x, y, n=100): |
|
|
|
# 2d histogram used in labels.png and evolve.png |
|
|
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) |
|
|
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) |
|
|
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) |
|
|
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) |
|
|
|
return np.log(hist[xidx, yidx]) |
|
|
|
|
|
|
|
|
|
|
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): |
|
|
|
from scipy.signal import butter, filtfilt |
|
|
|
|
|
|
|
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy |
|
|
|
def butter_lowpass(cutoff, fs, order): |
|
|
|
nyq = 0.5 * fs |
|
|
|
normal_cutoff = cutoff / nyq |
|
|
|
return butter(order, normal_cutoff, btype='low', analog=False) |
|
|
|
|
|
|
|
b, a = butter_lowpass(cutoff, fs, order=order) |
|
|
|
return filtfilt(b, a, data) # forward-backward filter |
|
|
|
|
|
|
|
|
|
|
|
class Annotator: |
|
|
|
# YOLOv5 PIL Annotator class |
|
|
|
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations |
|
|
|
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=True): |
|
|
|
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.' |
|
|
|
self.pil = pil |
|
|
@@ -79,9 +57,11 @@ class Annotator: |
|
|
|
f = font_size or max(round(s * 0.035), 12) |
|
|
|
try: |
|
|
|
self.font = ImageFont.truetype(font, size=f) |
|
|
|
except: # download TTF |
|
|
|
except Exception as e: # download TTF if missing |
|
|
|
print(f'WARNING: Annotator font {font} not found: {e}') |
|
|
|
url = "https://github.com/ultralytics/yolov5/releases/download/v1.0/" + font |
|
|
|
torch.hub.download_url_to_file(url, font) |
|
|
|
print(f'Annotator font successfully downloaded from {url} to {font}') |
|
|
|
self.font = ImageFont.truetype(font, size=f) |
|
|
|
self.fh = self.font.getsize('a')[1] - 3 # font height |
|
|
|
else: # use cv2 |
|
|
@@ -122,6 +102,28 @@ class Annotator: |
|
|
|
return np.asarray(self.im) |
|
|
|
|
|
|
|
|
|
|
|
def hist2d(x, y, n=100): |
|
|
|
# 2d histogram used in labels.png and evolve.png |
|
|
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) |
|
|
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) |
|
|
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) |
|
|
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) |
|
|
|
return np.log(hist[xidx, yidx]) |
|
|
|
|
|
|
|
|
|
|
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): |
|
|
|
from scipy.signal import butter, filtfilt |
|
|
|
|
|
|
|
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy |
|
|
|
def butter_lowpass(cutoff, fs, order): |
|
|
|
nyq = 0.5 * fs |
|
|
|
normal_cutoff = cutoff / nyq |
|
|
|
return butter(order, normal_cutoff, btype='low', analog=False) |
|
|
|
|
|
|
|
b, a = butter_lowpass(cutoff, fs, order=order) |
|
|
|
return filtfilt(b, a, data) # forward-backward filter |
|
|
|
|
|
|
|
|
|
|
|
def output_to_target(output): |
|
|
|
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] |
|
|
|
targets = [] |