|
|
@@ -433,9 +433,12 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' |
|
|
|
conf_thres=0.25 # TF.js NMS: confidence threshold |
|
|
|
): |
|
|
|
t = time.time() |
|
|
|
include = [x.lower() for x in include] |
|
|
|
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports |
|
|
|
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) |
|
|
|
include = [x.lower() for x in include] # to lowercase |
|
|
|
formats = tuple(export_formats()['Argument'][1:]) # --include arguments |
|
|
|
flags = [x in include for x in formats] |
|
|
|
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {formats}' |
|
|
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans |
|
|
|
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights |
|
|
|
|
|
|
|
# Load PyTorch model |
|
|
|
device = select_device(device) |
|
|
@@ -475,20 +478,19 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' |
|
|
|
# Exports |
|
|
|
f = [''] * 10 # exported filenames |
|
|
|
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning |
|
|
|
if 'torchscript' in include: |
|
|
|
if jit: |
|
|
|
f[0] = export_torchscript(model, im, file, optimize) |
|
|
|
if 'engine' in include: # TensorRT required before ONNX |
|
|
|
if engine: # TensorRT required before ONNX |
|
|
|
f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose) |
|
|
|
if ('onnx' in include) or ('openvino' in include): # OpenVINO requires ONNX |
|
|
|
if onnx or xml: # OpenVINO requires ONNX |
|
|
|
f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify) |
|
|
|
if 'openvino' in include: |
|
|
|
if xml: # OpenVINO |
|
|
|
f[3] = export_openvino(model, im, file) |
|
|
|
if 'coreml' in include: |
|
|
|
if coreml: |
|
|
|
_, f[4] = export_coreml(model, im, file) |
|
|
|
|
|
|
|
# TensorFlow Exports |
|
|
|
if any(tf_exports): |
|
|
|
pb, tflite, edgetpu, tfjs = tf_exports[1:] |
|
|
|
if any((saved_model, pb, tflite, edgetpu, tfjs)): |
|
|
|
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707 |
|
|
|
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow` |
|
|
|
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.' |