Pārlūkot izejas kodu

rename eval

5.0
Jirka pirms 4 gadiem
vecāks
revīzija
df270ea9d7
3 mainītis faili ar 4 papildinājumiem un 4 dzēšanām
  1. +1
    -1
      eval.py
  2. +2
    -2
      train.py
  3. +1
    -1
      utils/utils.py

test.py → eval.py Parādīt failu

@@ -233,7 +233,7 @@ def test(data,


if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser = argparse.ArgumentParser(prog='eval.py')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')

+ 2
- 2
train.py Parādīt failu

@@ -7,7 +7,7 @@ import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter

import test # import test.py to get mAP after each epoch
import eval # import eval.py to get mAP after each epoch
from models.yolo import Model
from utils import google_utils
from utils.datasets import *
@@ -291,7 +291,7 @@ def train(hyp):
ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride'])
final_epoch = epoch + 1 == epochs
if not opt.notest or final_epoch: # Calculate mAP
results, maps, times = test.test(opt.data,
results, maps, times = eval.test(opt.data,
batch_size=batch_size,
imgsz=imgsz_test,
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),

+ 1
- 1
utils/utils.py Parādīt failu

@@ -1087,7 +1087,7 @@ def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()


def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt()
# Plot study.txt generated by test.py
# Plot study.txt generated by eval.py
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
ax = ax.ravel()


Notiek ielāde…
Atcelt
Saglabāt