|
|
@@ -35,7 +35,7 @@ from utils.torch_utils import torch_distributed_zero_first |
|
|
|
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' |
|
|
|
IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes |
|
|
|
VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes |
|
|
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) # DPP |
|
|
|
DEVICE_COUNT = max(torch.cuda.device_count(), 1) |
|
|
|
|
|
|
|
# Get orientation exif tag |
|
|
|
for orientation in ExifTags.TAGS.keys(): |
|
|
@@ -110,7 +110,7 @@ def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=Non |
|
|
|
prefix=prefix) |
|
|
|
|
|
|
|
batch_size = min(batch_size, len(dataset)) |
|
|
|
nw = min([os.cpu_count() // WORLD_SIZE, batch_size if batch_size > 1 else 0, workers]) # number of workers |
|
|
|
nw = min([os.cpu_count() // DEVICE_COUNT, batch_size if batch_size > 1 else 0, workers]) # number of workers |
|
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) |
|
|
|
loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates |
|
|
|
return loader(dataset, |