Browse Source

hyperparameter evolution bug fix (#566)

5.0
Glenn Jocher 4 years ago
parent
commit
e32abb5fb9
2 changed files with 29 additions and 13 deletions
  1. +12
    -7
      train.py
  2. +17
    -6
      utils/utils.py

+ 12
- 7
train.py View File

@@ -42,7 +42,7 @@ hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)

def train(hyp, opt, device, tb_writer=None):
print(f'Hyperparameters {hyp}')
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolve' # run directory
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory
os.makedirs(wdir, exist_ok=True)
last = wdir + 'last.pt'
@@ -491,6 +491,7 @@ if __name__ == '__main__':
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
opt.notest, opt.nosave = True, True # only test/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists

@@ -518,17 +519,21 @@ if __name__ == '__main__':
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = x[i + 7] * v[i] # mutate
hyp[k] = float(x[i + 7] * v[i]) # mutate

# Clip to limits
# Constrain to limits
for k, v in meta.items():
hyp[k] = np.clip(hyp[k], v[1], v[2])
hyp[k] = max(hyp[k], v[1]) # lower limit
hyp[k] = min(hyp[k], v[2]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits

# Train mutation
results = train(hyp.copy(), opt, device)

# Write mutation results
print_mutation(hyp, results, opt.bucket)
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

# Plot results
# plot_evolution_results(hyp)
# Plot results
plot_evolution_results(yaml_file)
print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
'hyperparameters: $ python train.py --hyp %s' % (f, f))

+ 17
- 6
utils/utils.py View File

@@ -818,11 +818,11 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
return print_results(k)


def print_mutation(hyp, results, bucket=''):
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
# Print mutation results to evolve.txt (for use with train.py --evolve)
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%10.4g' * len(results) % results # results (P, R, mAP, F1, test_loss)
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))

if bucket:
@@ -831,11 +831,19 @@ def print_mutation(hyp, results, bucket=''):
with open('evolve.txt', 'a') as f: # append result
f.write(c + b + '\n')
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness
x = x[np.argsort(-fitness(x))] # sort
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness

if bucket:
os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt

# Save yaml
for i, k in enumerate(hyp.keys()):
hyp[k] = float(x[0, i + 7])
with open(yaml_file, 'w') as f:
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
yaml.dump(hyp, f, sort_keys=False)


def apply_classifier(x, model, img, im0):
# applies a second stage classifier to yolo outputs
@@ -1146,23 +1154,26 @@ def plot_labels(labels, save_dir=''):
plt.close()


def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp)
def plot_evolution_results(yaml_file='hyp_evolved.yaml'): # from utils.utils import *; plot_evolution_results()
# Plot hyperparameter evolution results in evolve.txt
with open(yaml_file) as f:
hyp = yaml.load(f, Loader=yaml.FullLoader)
x = np.loadtxt('evolve.txt', ndmin=2)
f = fitness(x)
# weights = (f - f.min()) ** 2 # for weighted results
plt.figure(figsize=(12, 10), tight_layout=True)
plt.figure(figsize=(14, 10), tight_layout=True)
matplotlib.rc('font', **{'size': 8})
for i, (k, v) in enumerate(hyp.items()):
y = x[:, i + 7]
# mu = (y * weights).sum() / weights.sum() # best weighted result
mu = y[f.argmax()] # best single result
plt.subplot(4, 5, i + 1)
plt.subplot(4, 6, i + 1)
plt.plot(mu, f.max(), 'o', markersize=10)
plt.plot(y, f, '.')
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
print('%15s: %.3g' % (k, mu))
plt.savefig('evolve.png', dpi=200)
print('\nPlot saved as evolve.png')


def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay()

Loading…
Cancel
Save