|
|
@@ -818,11 +818,11 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
return print_results(k) |
|
|
|
|
|
|
|
|
|
|
|
def print_mutation(hyp, results, bucket=''): |
|
|
|
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): |
|
|
|
# Print mutation results to evolve.txt (for use with train.py --evolve) |
|
|
|
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys |
|
|
|
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values |
|
|
|
c = '%10.4g' * len(results) % results # results (P, R, mAP, F1, test_loss) |
|
|
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) |
|
|
|
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) |
|
|
|
|
|
|
|
if bucket: |
|
|
@@ -831,11 +831,19 @@ def print_mutation(hyp, results, bucket=''): |
|
|
|
with open('evolve.txt', 'a') as f: # append result |
|
|
|
f.write(c + b + '\n') |
|
|
|
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows |
|
|
|
np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness |
|
|
|
x = x[np.argsort(-fitness(x))] # sort |
|
|
|
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness |
|
|
|
|
|
|
|
if bucket: |
|
|
|
os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt |
|
|
|
|
|
|
|
# Save yaml |
|
|
|
for i, k in enumerate(hyp.keys()): |
|
|
|
hyp[k] = float(x[0, i + 7]) |
|
|
|
with open(yaml_file, 'w') as f: |
|
|
|
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') |
|
|
|
yaml.dump(hyp, f, sort_keys=False) |
|
|
|
|
|
|
|
|
|
|
|
def apply_classifier(x, model, img, im0): |
|
|
|
# applies a second stage classifier to yolo outputs |
|
|
@@ -1146,23 +1154,26 @@ def plot_labels(labels, save_dir=''): |
|
|
|
plt.close() |
|
|
|
|
|
|
|
|
|
|
|
def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp) |
|
|
|
def plot_evolution_results(yaml_file='hyp_evolved.yaml'): # from utils.utils import *; plot_evolution_results() |
|
|
|
# Plot hyperparameter evolution results in evolve.txt |
|
|
|
with open(yaml_file) as f: |
|
|
|
hyp = yaml.load(f, Loader=yaml.FullLoader) |
|
|
|
x = np.loadtxt('evolve.txt', ndmin=2) |
|
|
|
f = fitness(x) |
|
|
|
# weights = (f - f.min()) ** 2 # for weighted results |
|
|
|
plt.figure(figsize=(12, 10), tight_layout=True) |
|
|
|
plt.figure(figsize=(14, 10), tight_layout=True) |
|
|
|
matplotlib.rc('font', **{'size': 8}) |
|
|
|
for i, (k, v) in enumerate(hyp.items()): |
|
|
|
y = x[:, i + 7] |
|
|
|
# mu = (y * weights).sum() / weights.sum() # best weighted result |
|
|
|
mu = y[f.argmax()] # best single result |
|
|
|
plt.subplot(4, 5, i + 1) |
|
|
|
plt.subplot(4, 6, i + 1) |
|
|
|
plt.plot(mu, f.max(), 'o', markersize=10) |
|
|
|
plt.plot(y, f, '.') |
|
|
|
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters |
|
|
|
print('%15s: %.3g' % (k, mu)) |
|
|
|
plt.savefig('evolve.png', dpi=200) |
|
|
|
print('\nPlot saved as evolve.png') |
|
|
|
|
|
|
|
|
|
|
|
def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay() |