@@ -21,9 +21,9 @@ sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path | |||
from models.experimental import attempt_load | |||
from utils.datasets import LoadStreams, LoadImages | |||
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \ | |||
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, is_ascii, non_max_suppression, \ | |||
apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box | |||
from utils.plots import colors, Annotator | |||
from utils.plots import Annotator, colors | |||
from utils.torch_utils import select_device, load_classifier, time_sync | |||
@@ -105,6 +105,7 @@ def run(weights='yolov5s.pt', # model.pt path(s) | |||
output_details = interpreter.get_output_details() # outputs | |||
int8 = input_details[0]['dtype'] == np.uint8 # is TFLite quantized uint8 model | |||
imgsz = check_img_size(imgsz, s=stride) # check image size | |||
ascii = is_ascii(names) # names are ascii (use PIL for UTF-8) | |||
# Dataloader | |||
if webcam: | |||
@@ -181,7 +182,7 @@ def run(weights='yolov5s.pt', # model.pt path(s) | |||
s += '%gx%g ' % img.shape[2:] # print string | |||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |||
imc = im0.copy() if save_crop else im0 # for save_crop | |||
annotator = Annotator(im0, line_width=line_thickness, pil=False) | |||
annotator = Annotator(im0, line_width=line_thickness, pil=not ascii) | |||
if len(det): | |||
# Rescale boxes from img_size to im0 size | |||
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() |
@@ -18,9 +18,9 @@ from PIL import Image | |||
from torch.cuda import amp | |||
from utils.datasets import exif_transpose, letterbox | |||
from utils.general import colorstr, non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, \ | |||
save_one_box | |||
from utils.plots import colors, Annotator | |||
from utils.general import colorstr, increment_path, is_ascii, make_divisible, non_max_suppression, save_one_box, \ | |||
scale_coords, xyxy2xywh | |||
from utils.plots import Annotator, colors | |||
from utils.torch_utils import time_sync | |||
LOGGER = logging.getLogger(__name__) | |||
@@ -354,6 +354,7 @@ class Detections: | |||
self.imgs = imgs # list of images as numpy arrays | |||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) | |||
self.names = names # class names | |||
self.ascii = is_ascii(names) # names are ascii (use PIL for UTF-8) | |||
self.files = files # image filenames | |||
self.xyxy = pred # xyxy pixels | |||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels | |||
@@ -371,7 +372,7 @@ class Detections: | |||
n = (pred[:, -1] == c).sum() # detections per class | |||
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string | |||
if show or save or render or crop: | |||
annotator = Annotator(im, pil=False) | |||
annotator = Annotator(im, pil=not self.ascii) | |||
for *box, conf, cls in reversed(pred): # xyxy, confidence, class | |||
label = f'{self.names[int(cls)]} {conf:.2f}' | |||
if crop: |
@@ -124,7 +124,7 @@ def is_pip(): | |||
def is_ascii(s=''): | |||
# Is string composed of all ASCII (no UTF) characters? | |||
s = str(s) # convert to str() in case of None, etc. | |||
s = str(s) # convert list, tuple, None, etc. to str | |||
return len(s.encode().decode('ascii', 'ignore')) == len(s) | |||