Browse Source

Initial model ensemble capability #318

5.0
Glenn Jocher 4 years ago
parent
commit
e8cf24b6c8
4 changed files with 33 additions and 20 deletions
  1. +3
    -4
      detect.py
  2. +17
    -0
      models/experimental.py
  3. +12
    -15
      test.py
  4. +1
    -1
      utils/datasets.py

+ 3
- 4
detect.py View File

@@ -2,7 +2,7 @@ import argparse

import torch.backends.cudnn as cudnn

from utils import google_utils
from models.experimental import *
from utils.datasets import *
from utils.utils import *

@@ -20,8 +20,7 @@ def detect(save_img=False):
half = device.type != 'cpu' # half precision only supported on CUDA

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model'].float().eval() # load FP32 model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
@@ -137,7 +136,7 @@ def detect(save_img=False):

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')

+ 17
- 0
models/experimental.py View File

@@ -1,6 +1,7 @@
# This file contains experimental modules

from models.common import *
from utils import google_utils


class CrossConv(nn.Module):
@@ -119,3 +120,19 @@ class Ensemble(nn.ModuleList):
for module in self:
y.append(module(x, augment)[0])
return torch.cat(y, 1), None # ensembled inference output, train output


def attempt_load(weights, map_location=None):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
google_utils.attempt_download(w)
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model

if len(model) == 1:
return model[-1] # return model
else:
print('Ensemble created with %s\n' % weights)
for k in ['names', 'stride']:
setattr(model, k, getattr(model[-1], k))
return model # return ensemble

+ 12
- 15
test.py View File

@@ -1,9 +1,8 @@
import argparse
import json

from utils import google_utils
from models.experimental import *
from utils.datasets import *
from utils.utils import *


def test(data,
@@ -20,28 +19,26 @@ def test(data,
dataloader=None,
merge=False):
# Initialize/load model and set device
if model is None:
training = False
merge = opt.merge # use Merge NMS
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device

else: # called directly
device = torch_utils.select_device(opt.device, batch_size=batch_size)
merge = opt.merge # use Merge NMS

# Remove previous
for f in glob.glob('test_batch*.jpg'):
os.remove(f)

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model'].float().fuse().to(device) # load to FP32
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size

# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)

else: # called by train.py
training = True
device = next(model.parameters()).device # get model device

# Half
half = device.type != 'cpu' and torch.cuda.device_count() == 1 # half precision only supported on single-GPU
if half:
@@ -56,11 +53,11 @@ def test(data,
niou = iouv.numel()

# Dataloader
if dataloader is None: # not training
if not training:
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
dataloader = create_dataloader(path, imgsz, batch_size, int(max(model.stride)), opt,
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]

seen = 0
@@ -193,7 +190,7 @@ def test(data,
if save_json and map50 and len(jdict):
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
f = 'detections_val2017_%s_results.json' % \
(weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
(weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
print('\nCOCO mAP with pycocotools... saving %s...' % f)
with open(f, 'w') as file:
json.dump(jdict, file)
@@ -226,7 +223,7 @@ def test(data,

if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')

+ 1
- 1
utils/datasets.py View File

@@ -48,7 +48,7 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
rect=rect, # rectangular training
cache_images=cache,
single_cls=opt.single_cls,
stride=stride,
stride=int(stride),
pad=pad)

batch_size = min(batch_size, len(dataset))

Loading…
Cancel
Save