|
|
@@ -64,11 +64,11 @@ class Detect(nn.Module): |
|
|
|
|
|
|
|
y = x[i].sigmoid() |
|
|
|
if self.inplace: |
|
|
|
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy |
|
|
|
y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy |
|
|
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh |
|
|
|
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 |
|
|
|
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0 |
|
|
|
xy = (xy * 2 + (self.grid[i] - 0.5)) * self.stride[i] # xy |
|
|
|
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy |
|
|
|
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh |
|
|
|
y = torch.cat((xy, wh, conf), 4) |
|
|
|
z.append(y.view(bs, -1, self.no)) |
|
|
@@ -82,7 +82,7 @@ class Detect(nn.Module): |
|
|
|
yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d), indexing='ij') |
|
|
|
else: |
|
|
|
yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d)) |
|
|
|
grid = torch.stack((xv, yv), 2).expand(shape).float() |
|
|
|
grid = torch.stack((xv, yv), 2).expand(shape).float() - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5 |
|
|
|
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float() |
|
|
|
return grid, anchor_grid |
|
|
|
|