@@ -69,9 +69,9 @@ jobs: | |||
# detect custom | |||
python detect.py --weights runs/exp0/weights/last.pt --device $di | |||
# test official | |||
python test.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 2 | |||
python eval.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 2 | |||
# test custom | |||
python test.py --weights runs/exp0/weights/last.pt --device $di --batch-size 2 | |||
python eval.py --weights runs/exp0/weights/last.pt --device $di --batch-size 2 | |||
# inspect | |||
python models/yolo.py --cfg models/${{ matrix.yolo5-model }}.yaml | |||
# export |
@@ -27,8 +27,8 @@ This repository represents Ultralytics open-source research into future object d | |||
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy. | |||
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001` | |||
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1` | |||
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python eval.py --data coco.yaml --img 736 --conf 0.001` | |||
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python eval.py --data coco.yaml --img 640 --conf 0.1` | |||
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). | |||
@@ -236,7 +236,7 @@ | |||
}, | |||
"source": [ | |||
"# Run YOLOv5x on COCO val2017\n", | |||
"!python test.py --weights yolov5x.pt --data coco.yaml --img 672" | |||
"!python eval.py --weights yolov5x.pt --data coco.yaml --img 672" | |||
], | |||
"execution_count": null, | |||
"outputs": [ | |||
@@ -319,7 +319,7 @@ | |||
}, | |||
"source": [ | |||
"# Run YOLOv5s on COCO test-dev2017 with argument --task test\n", | |||
"!python test.py --weights yolov5s.pt --data ./data/coco.yaml --task test" | |||
"!python eval.py --weights yolov5s.pt --data ./data/coco.yaml --task test" | |||
], | |||
"execution_count": null, | |||
"outputs": [] | |||
@@ -717,7 +717,7 @@ | |||
"for x in best*\n", | |||
"do\n", | |||
" gsutil cp gs://*/*/*/$x.pt .\n", | |||
" python test.py --weights $x.pt --data coco.yaml --img 672\n", | |||
" python eval.py --weights $x.pt --data coco.yaml --img 672\n", | |||
"done" | |||
], | |||
"execution_count": null, | |||
@@ -744,8 +744,8 @@ | |||
" do\n", | |||
" python detect.py --weights $x.pt --device $di # detect official\n", | |||
" python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n", | |||
" python test.py --weights $x.pt --device $di # test official\n", | |||
" python test.py --weights runs/exp0/weights/last.pt --device $di # test custom\n", | |||
" python eval.py --weights $x.pt --device $di # test official\n", | |||
" python eval.py --weights runs/exp0/weights/last.pt --device $di # test custom\n", | |||
" done\n", | |||
" python models/yolo.py --cfg $x.yaml # inspect\n", | |||
" python models/export.py --weights $x.pt --img 640 --batch 1 # export\n", |