|
|
@@ -68,35 +68,37 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa |
|
|
|
|
|
|
|
class LoadImages: # for inference |
|
|
|
def __init__(self, path, img_size=640): |
|
|
|
path = str(Path(path)) # os-agnostic |
|
|
|
files = [] |
|
|
|
if os.path.isdir(path): |
|
|
|
files = sorted(glob.glob(os.path.join(path, '*.*'))) |
|
|
|
elif os.path.isfile(path): |
|
|
|
files = [path] |
|
|
|
p = str(Path(path)) # os-agnostic |
|
|
|
p = os.path.abspath(p) # absolute path |
|
|
|
if os.path.isdir(p): |
|
|
|
files = sorted(glob.glob(os.path.join(p, '*.*'))) |
|
|
|
elif os.path.isfile(p): |
|
|
|
files = [p] |
|
|
|
else: |
|
|
|
raise Exception('ERROR: %s does not exist' % p) |
|
|
|
|
|
|
|
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats] |
|
|
|
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats] |
|
|
|
nI, nV = len(images), len(videos) |
|
|
|
ni, nv = len(images), len(videos) |
|
|
|
|
|
|
|
self.img_size = img_size |
|
|
|
self.files = images + videos |
|
|
|
self.nF = nI + nV # number of files |
|
|
|
self.video_flag = [False] * nI + [True] * nV |
|
|
|
self.nf = ni + nv # number of files |
|
|
|
self.video_flag = [False] * ni + [True] * nv |
|
|
|
self.mode = 'images' |
|
|
|
if any(videos): |
|
|
|
self.new_video(videos[0]) # new video |
|
|
|
else: |
|
|
|
self.cap = None |
|
|
|
assert self.nF > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \ |
|
|
|
(path, img_formats, vid_formats) |
|
|
|
assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \ |
|
|
|
(p, img_formats, vid_formats) |
|
|
|
|
|
|
|
def __iter__(self): |
|
|
|
self.count = 0 |
|
|
|
return self |
|
|
|
|
|
|
|
def __next__(self): |
|
|
|
if self.count == self.nF: |
|
|
|
if self.count == self.nf: |
|
|
|
raise StopIteration |
|
|
|
path = self.files[self.count] |
|
|
|
|
|
|
@@ -107,7 +109,7 @@ class LoadImages: # for inference |
|
|
|
if not ret_val: |
|
|
|
self.count += 1 |
|
|
|
self.cap.release() |
|
|
|
if self.count == self.nF: # last video |
|
|
|
if self.count == self.nf: # last video |
|
|
|
raise StopIteration |
|
|
|
else: |
|
|
|
path = self.files[self.count] |
|
|
@@ -115,14 +117,14 @@ class LoadImages: # for inference |
|
|
|
ret_val, img0 = self.cap.read() |
|
|
|
|
|
|
|
self.frame += 1 |
|
|
|
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='') |
|
|
|
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='') |
|
|
|
|
|
|
|
else: |
|
|
|
# Read image |
|
|
|
self.count += 1 |
|
|
|
img0 = cv2.imread(path) # BGR |
|
|
|
assert img0 is not None, 'Image Not Found ' + path |
|
|
|
print('image %g/%g %s: ' % (self.count, self.nF, path), end='') |
|
|
|
print('image %g/%g %s: ' % (self.count, self.nf, path), end='') |
|
|
|
|
|
|
|
# Padded resize |
|
|
|
img = letterbox(img0, new_shape=self.img_size)[0] |
|
|
@@ -140,7 +142,7 @@ class LoadImages: # for inference |
|
|
|
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
|
|
|
|
def __len__(self): |
|
|
|
return self.nF # number of files |
|
|
|
return self.nf # number of files |
|
|
|
|
|
|
|
|
|
|
|
class LoadWebcam: # for inference |
|
|
@@ -470,6 +472,13 @@ class LoadImagesAndLabels(Dataset): # for training/testing |
|
|
|
img, labels = load_mosaic(self, index) |
|
|
|
shapes = None |
|
|
|
|
|
|
|
# MixUp https://arxiv.org/pdf/1710.09412.pdf |
|
|
|
# if random.random() < 0.5: |
|
|
|
# img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1)) |
|
|
|
# r = np.random.beta(0.3, 0.3) # mixup ratio, alpha=beta=0.3 |
|
|
|
# img = (img * r + img2 * (1 - r)).astype(np.uint8) |
|
|
|
# labels = np.concatenate((labels, labels2), 0) |
|
|
|
|
|
|
|
else: |
|
|
|
# Load image |
|
|
|
img, (h0, w0), (h, w) = load_image(self, index) |