@@ -76,7 +76,7 @@ def detect(save_img=False): | |||
# Apply NMS | |||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, | |||
multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms) | |||
fast=True, classes=opt.classes, agnostic=opt.agnostic_nms) | |||
# Apply Classifier | |||
if classify: |
@@ -19,7 +19,7 @@ def test(data, | |||
augment=False, | |||
model=None, | |||
dataloader=None, | |||
multi_label=True, | |||
fast=False, | |||
verbose=False): # 0 fast, 1 accurate | |||
# Initialize/load model and set device | |||
if model is None: | |||
@@ -92,7 +92,7 @@ def test(data, | |||
# Run NMS | |||
t = torch_utils.time_synchronized() | |||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, multi_label=multi_label) | |||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, fast=fast) | |||
t1 += torch_utils.time_synchronized() - t | |||
# Statistics per image |
@@ -293,13 +293,13 @@ def train(hyp): | |||
final_epoch = epoch + 1 == epochs | |||
if not opt.notest or final_epoch: # Calculate mAP | |||
results, maps, times = test.test(opt.data, | |||
batch_size=batch_size, | |||
imgsz=imgsz_test, | |||
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'), | |||
model=ema.ema, | |||
single_cls=opt.single_cls, | |||
dataloader=testloader, | |||
multi_label=ni > n_burn) | |||
batch_size=batch_size, | |||
imgsz=imgsz_test, | |||
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'), | |||
model=ema.ema, | |||
single_cls=opt.single_cls, | |||
dataloader=testloader, | |||
fast=ni > n_burn) | |||
# Write | |||
with open(results_file, 'a') as f: | |||
@@ -325,10 +325,10 @@ def train(hyp): | |||
if save: | |||
with open(results_file, 'r') as f: # create checkpoint | |||
ckpt = {'epoch': epoch, | |||
'best_fitness': best_fitness, | |||
'training_results': f.read(), | |||
'model': ema.ema.module if hasattr(model, 'module') else ema.ema, | |||
'optimizer': None if final_epoch else optimizer.state_dict()} | |||
'best_fitness': best_fitness, | |||
'training_results': f.read(), | |||
'model': ema.ema.module if hasattr(model, 'module') else ema.ema, | |||
'optimizer': None if final_epoch else optimizer.state_dict()} | |||
# Save last, best and delete | |||
torch.save(ckpt, last) |
@@ -19,7 +19,7 @@ import torchvision | |||
from scipy.signal import butter, filtfilt | |||
from tqdm import tqdm | |||
from . import torch_utils, google_utils # torch_utils, google_utils | |||
from . import torch_utils, google_utils # torch_utils, google_utils | |||
# Set printoptions | |||
torch.set_printoptions(linewidth=320, precision=5, profile='long') | |||
@@ -460,29 +460,33 @@ def build_targets(p, targets, model): | |||
return tcls, tbox, indices, anch | |||
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_label=True, classes=None, agnostic=False): | |||
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, classes=None, agnostic=False): | |||
""" | |||
Performs Non-Maximum Suppression on inference results | |||
Returns detections with shape: | |||
nx6 (x1, y1, x2, y2, conf, cls) | |||
""" | |||
nc = prediction[0].shape[1] - 5 # number of classes | |||
# Settings | |||
merge = True # merge for best mAP | |||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height | |||
max_det = 300 # maximum number of detections per image | |||
time_limit = 10.0 # seconds to quit after | |||
redundant = conf_thres == 0.001 # require redundant detections | |||
redundant = True # require redundant detections | |||
fast |= conf_thres > 0.001 # fast mode | |||
if fast: | |||
merge = False | |||
multi_label = False | |||
else: | |||
merge = True # merge for best mAP (adds 0.5ms/img) | |||
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) | |||
t = time.time() | |||
nc = prediction[0].shape[1] - 5 # number of classes | |||
multi_label &= nc > 1 # multiple labels per box | |||
output = [None] * prediction.shape[0] | |||
for xi, x in enumerate(prediction): # image index, image inference | |||
# Apply constraints | |||
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height | |||
x = x[x[:, 4] > conf_thres] # confidence | |||
# x = x[((x[:, 2:4] > min_wh) & (x[:, 2:4] < max_wh)).all(1)] # width-height | |||
# If none remain process next image | |||
if not x.shape[0]: |