|
|
@@ -42,7 +42,6 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
epochs, batch_size, total_batch_size, weights, rank = \ |
|
|
|
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank |
|
|
|
|
|
|
|
# TODO: Use DDP logging. Only the first process is allowed to log. |
|
|
|
# Save run settings |
|
|
|
with open(log_dir / 'hyp.yaml', 'w') as f: |
|
|
|
yaml.dump(hyp, f, sort_keys=False) |
|
|
@@ -130,6 +129,8 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
|
|
|
|
# Epochs |
|
|
|
start_epoch = ckpt['epoch'] + 1 |
|
|
|
if opt.resume: |
|
|
|
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) |
|
|
|
if epochs < start_epoch: |
|
|
|
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % |
|
|
|
(weights, ckpt['epoch'], epochs)) |
|
|
@@ -158,19 +159,19 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank)) |
|
|
|
|
|
|
|
# Trainloader |
|
|
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, |
|
|
|
cache=opt.cache_images, rect=opt.rect, rank=rank, |
|
|
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, |
|
|
|
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, |
|
|
|
world_size=opt.world_size, workers=opt.workers) |
|
|
|
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class |
|
|
|
nb = len(dataloader) # number of batches |
|
|
|
ema.updates = start_epoch * nb // accumulate # set EMA updates |
|
|
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) |
|
|
|
|
|
|
|
# Testloader |
|
|
|
if rank in [-1, 0]: |
|
|
|
# local_rank is set to -1. Because only the first process is expected to do evaluation. |
|
|
|
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False, |
|
|
|
cache=opt.cache_images, rect=True, rank=-1, world_size=opt.world_size, |
|
|
|
workers=opt.workers)[0] |
|
|
|
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, |
|
|
|
hyp=hyp, augment=False, cache=opt.cache_images, rect=True, rank=-1, |
|
|
|
world_size=opt.world_size, workers=opt.workers)[0] # only runs on process 0 |
|
|
|
|
|
|
|
# Model parameters |
|
|
|
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset |
|
|
@@ -283,7 +284,7 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
scaler.step(optimizer) # optimizer.step |
|
|
|
scaler.update() |
|
|
|
optimizer.zero_grad() |
|
|
|
if ema is not None: |
|
|
|
if ema: |
|
|
|
ema.update(model) |
|
|
|
|
|
|
|
# Print |
|
|
@@ -305,12 +306,13 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
# end batch ------------------------------------------------------------------------------------------------ |
|
|
|
|
|
|
|
# Scheduler |
|
|
|
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard |
|
|
|
scheduler.step() |
|
|
|
|
|
|
|
# DDP process 0 or single-GPU |
|
|
|
if rank in [-1, 0]: |
|
|
|
# mAP |
|
|
|
if ema is not None: |
|
|
|
if ema: |
|
|
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride']) |
|
|
|
final_epoch = epoch + 1 == epochs |
|
|
|
if not opt.notest or final_epoch: # Calculate mAP |
|
|
@@ -330,10 +332,11 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
|
|
|
|
# Tensorboard |
|
|
|
if tb_writer: |
|
|
|
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', |
|
|
|
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss |
|
|
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', |
|
|
|
'val/giou_loss', 'val/obj_loss', 'val/cls_loss'] |
|
|
|
for x, tag in zip(list(mloss[:-1]) + list(results), tags): |
|
|
|
'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss |
|
|
|
'x/lr0', 'x/lr1', 'x/lr2'] # params |
|
|
|
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): |
|
|
|
tb_writer.add_scalar(tag, x, epoch) |
|
|
|
|
|
|
|
# Update best mAP |
|
|
@@ -389,8 +392,7 @@ if __name__ == '__main__': |
|
|
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes') |
|
|
|
parser.add_argument('--rect', action='store_true', help='rectangular training') |
|
|
|
parser.add_argument('--resume', nargs='?', const='get_last', default=False, |
|
|
|
help='resume from given path/last.pt, or most recent run if blank') |
|
|
|
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') |
|
|
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') |
|
|
|
parser.add_argument('--notest', action='store_true', help='only test final epoch') |
|
|
|
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') |
|
|
@@ -413,21 +415,24 @@ if __name__ == '__main__': |
|
|
|
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 |
|
|
|
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 |
|
|
|
set_logging(opt.global_rank) |
|
|
|
|
|
|
|
# Resume |
|
|
|
if opt.resume: |
|
|
|
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run |
|
|
|
if last and not opt.weights: |
|
|
|
logger.info(f'Resuming training from {last}') |
|
|
|
opt.weights = last if opt.resume and not opt.weights else opt.weights |
|
|
|
if opt.global_rank in [-1, 0]: |
|
|
|
check_git_status() |
|
|
|
|
|
|
|
opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml') |
|
|
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files |
|
|
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|
|
|
# Resume |
|
|
|
if opt.resume: # resume an interrupted run |
|
|
|
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path |
|
|
|
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' |
|
|
|
with open(Path(ckpt).parent.parent / 'opt.yaml') as f: |
|
|
|
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace |
|
|
|
opt.cfg, opt.weights, opt.resume = '', ckpt, True |
|
|
|
logger.info('Resuming training from %s' % ckpt) |
|
|
|
|
|
|
|
else: |
|
|
|
opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml') |
|
|
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files |
|
|
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|
|
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) |
|
|
|
|
|
|
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) |
|
|
|
device = select_device(opt.device, batch_size=opt.batch_size) |
|
|
|
|
|
|
|
# DDP mode |