Browse Source

AutoAnchor update to display anchors/target

5.0
Glenn Jocher 4 years ago
parent
commit
ec7a926163
1 changed files with 7 additions and 5 deletions
  1. +7
    -5
      utils/utils.py

+ 7
- 5
utils/utils.py View File

@@ -84,15 +84,17 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
best = x.max(1)[0] # best_x
return (best > 1. / thr).float().mean() # best possible recall
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
bpr = (best > 1. / thr).float().mean() # best possible recall
return bpr, aat

bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))
print('Best Possible Recall (BPR) = %.4f' % bpr, end='')
if bpr < 0.99: # threshold to recompute
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='')
if bpr < 0.98: # threshold to recompute
print('. Attempting to generate improved anchors, please wait...' % bpr)
na = m.anchor_grid.numel() // 2 # number of anchors
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
new_bpr = metric(new_anchors.reshape(-1, 2))
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
if new_bpr > bpr: # replace anchors
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference

Loading…
Cancel
Save