Browse Source

check_anchors() bug fix #90

5.0
Glenn Jocher 4 years ago
parent
commit
ec81c7b5f2
2 changed files with 7 additions and 7 deletions
  1. +1
    -1
      train.py
  2. +6
    -6
      utils/utils.py

+ 1
- 1
train.py View File

@@ -199,7 +199,7 @@ def train(hyp):
tb_writer.add_histogram('classes', c, 0)

# Check anchors
check_best_possible_recall(dataset, anchors=model.model[-1].anchor_grid, thr=hyp['anchor_t'], imgsz=imgsz)
check_anchors(dataset, anchors=model.model[-1].anchor_grid, thr=hyp['anchor_t'], imgsz=imgsz)

# Exponential moving average
ema = torch_utils.ModelEMA(model)

+ 6
- 6
utils/utils.py View File

@@ -52,8 +52,9 @@ def check_img_size(img_size, s=32):
return make_divisible(img_size, s) # nearest gs-multiple


def check_best_possible_recall(dataset, anchors, thr=4.0, imgsz=640):
def check_anchors(dataset, model, thr=4.0, imgsz=640):
# Check best possible recall of dataset with current anchors
anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio
@@ -62,7 +63,6 @@ def check_best_possible_recall(dataset, anchors, thr=4.0, imgsz=640):
mr = (m < thr).float().mean() # match ratio
print(('AutoAnchor labels:' + '%10s' * 6) % ('n', 'mean', 'min', 'max', 'matching', 'recall'))
print((' ' + '%10.4g' * 6) % (wh.shape[0], wh.mean(), wh.min(), wh.max(), mr, bpr))

assert bpr > 0.9, 'Best possible recall %.3g (BPR) below 0.9 threshold. Training cancelled. ' \
'Compute new anchors with utils.utils.kmeans_anchors() and update model before training.' % bpr

@@ -512,10 +512,10 @@ def build_targets(p, targets, model):


def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, classes=None, agnostic=False):
"""
Performs Non-Maximum Suppression on inference results
Returns detections with shape:
nx6 (x1, y1, x2, y2, conf, cls)
"""Performs Non-Maximum Suppression (NMS) on inference results
Returns:
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
"""
if prediction.dtype is torch.float16:
prediction = prediction.float() # to FP32

Loading…
Cancel
Save