Browse Source

datasets.py self.batch_shapes fix

5.0
Glenn Jocher 4 years ago
parent
commit
ee8988b8a2
3 changed files with 3 additions and 4 deletions
  1. +0
    -1
      models/yolo.py
  2. +2
    -2
      test.py
  3. +1
    -1
      utils/datasets.py

+ 0
- 1
models/yolo.py View File

@@ -20,7 +20,6 @@ class Detect(nn.Module):
self.export = False # onnx export

def forward(self, x):
x = x.copy()
z = [] # inference output
self.training |= self.export
for i in range(self.nl):

+ 2
- 2
test.py View File

@@ -244,7 +244,7 @@ if __name__ == '__main__':
print(opt)

# task = 'val', 'test', 'study'
if opt.task == 'val': # (default) run normally
if opt.task in ['val', 'test']: # (default) run normally
test(opt.data,
opt.weights,
opt.batch_size,
@@ -258,7 +258,7 @@ if __name__ == '__main__':
elif opt.task == 'study': # run over a range of settings and save/plot
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
x = list(range(256, 1024, 32)) # x axis
x = list(range(256, 1024, 64)) # x axis
y = [] # y axis
for i in x: # img-size
print('\nRunning %s point %s...' % (f, i))

+ 1
- 1
utils/datasets.py View File

@@ -322,7 +322,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
elif mini > 1:
shapes[i] = [1, 1 / mini]

self.batch_shapes = np.ceil(np.array(shapes) * img_size / 64.).astype(np.int) * 64
self.batch_shapes = np.round(np.array(shapes) * img_size / 32. + 1.).astype(np.int) * 32

# Cache labels
self.imgs = [None] * n

Loading…
Cancel
Save