* Update torch_utils.py * Additional code refactoring * tuples to sets * CleanupmodifyDataloader
@@ -160,15 +160,15 @@ def run( | |||
if save_txt: # Write to file | |||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | |||
with open(txt_path + '.txt', 'a') as f: | |||
with open(f'{txt_path}.txt', 'a') as f: | |||
f.write(('%g ' * len(line)).rstrip() % line + '\n') | |||
if save_img or save_crop or view_img: # Add bbox to image | |||
c = int(cls) # integer class | |||
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') | |||
annotator.box_label(xyxy, label, color=colors(c, True)) | |||
if save_crop: | |||
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) | |||
if save_crop: | |||
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) | |||
# Stream results | |||
im0 = annotator.result() |
@@ -175,7 +175,7 @@ def export_openvino(model, im, file, half, prefix=colorstr('OpenVINO:')): | |||
import openvino.inference_engine as ie | |||
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') | |||
f = str(file).replace('.pt', '_openvino_model' + os.sep) | |||
f = str(file).replace('.pt', f'_openvino_model{os.sep}') | |||
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}" | |||
subprocess.check_output(cmd, shell=True) | |||
@@ -385,7 +385,7 @@ def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')): | |||
cmd = 'edgetpu_compiler --version' | |||
help_url = 'https://coral.ai/docs/edgetpu/compiler/' | |||
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' | |||
if subprocess.run(cmd + ' >/dev/null', shell=True).returncode != 0: | |||
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0: | |||
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') | |||
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system | |||
for c in ( | |||
@@ -419,7 +419,7 @@ def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): | |||
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') | |||
f = str(file).replace('.pt', '_web_model') # js dir | |||
f_pb = file.with_suffix('.pb') # *.pb path | |||
f_json = f + '/model.json' # *.json path | |||
f_json = f'{f}/model.json' # *.json path | |||
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \ | |||
f'--output_node_names="Identity,Identity_1,Identity_2,Identity_3" {f_pb} {f}' |
@@ -88,7 +88,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio | |||
# Loggers | |||
data_dict = None | |||
if RANK in [-1, 0]: | |||
if RANK in {-1, 0}: | |||
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance | |||
if loggers.wandb: | |||
data_dict = loggers.wandb.data_dict | |||
@@ -181,7 +181,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio | |||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) | |||
# EMA | |||
ema = ModelEMA(model) if RANK in [-1, 0] else None | |||
ema = ModelEMA(model) if RANK in {-1, 0} else None | |||
# Resume | |||
start_epoch, best_fitness = 0, 0.0 | |||
@@ -238,7 +238,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio | |||
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' | |||
# Process 0 | |||
if RANK in [-1, 0]: | |||
if RANK in {-1, 0}: | |||
val_loader = create_dataloader(val_path, | |||
imgsz, | |||
batch_size // WORLD_SIZE * 2, | |||
@@ -320,7 +320,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio | |||
train_loader.sampler.set_epoch(epoch) | |||
pbar = enumerate(train_loader) | |||
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) | |||
if RANK in (-1, 0): | |||
if RANK in {-1, 0}: | |||
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar | |||
optimizer.zero_grad() | |||
for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- | |||
@@ -369,7 +369,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio | |||
last_opt_step = ni | |||
# Log | |||
if RANK in (-1, 0): | |||
if RANK in {-1, 0}: | |||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses | |||
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) | |||
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % | |||
@@ -383,7 +383,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio | |||
lr = [x['lr'] for x in optimizer.param_groups] # for loggers | |||
scheduler.step() | |||
if RANK in (-1, 0): | |||
if RANK in {-1, 0}: | |||
# mAP | |||
callbacks.run('on_train_epoch_end', epoch=epoch) | |||
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) | |||
@@ -444,7 +444,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio | |||
# end epoch ---------------------------------------------------------------------------------------------------- | |||
# end training ----------------------------------------------------------------------------------------------------- | |||
if RANK in (-1, 0): | |||
if RANK in {-1, 0}: | |||
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') | |||
for f in last, best: | |||
if f.exists(): | |||
@@ -522,7 +522,7 @@ def parse_opt(known=False): | |||
def main(opt, callbacks=Callbacks()): | |||
# Checks | |||
if RANK in (-1, 0): | |||
if RANK in {-1, 0}: | |||
print_args(vars(opt)) | |||
check_git_status() | |||
check_requirements(exclude=['thop']) |
@@ -104,7 +104,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen | |||
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \ | |||
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \ | |||
f'past_thr={x[x > thr].mean():.3f}-mean: ' | |||
for i, x in enumerate(k): | |||
for x in k: | |||
s += '%i,%i, ' % (round(x[0]), round(x[1])) | |||
if verbose: | |||
LOGGER.info(s[:-2]) |
@@ -57,9 +57,7 @@ def exif_size(img): | |||
s = img.size # (width, height) | |||
try: | |||
rotation = dict(img._getexif().items())[orientation] | |||
if rotation == 6: # rotation 270 | |||
s = (s[1], s[0]) | |||
elif rotation == 8: # rotation 90 | |||
if rotation in [6, 8]: # rotation 270 or 90 | |||
s = (s[1], s[0]) | |||
except Exception: | |||
pass | |||
@@ -156,7 +154,7 @@ class InfiniteDataLoader(dataloader.DataLoader): | |||
return len(self.batch_sampler.sampler) | |||
def __iter__(self): | |||
for i in range(len(self)): | |||
for _ in range(len(self)): | |||
yield next(self.iterator) | |||
@@ -224,10 +222,9 @@ class LoadImages: | |||
self.cap.release() | |||
if self.count == self.nf: # last video | |||
raise StopIteration | |||
else: | |||
path = self.files[self.count] | |||
self.new_video(path) | |||
ret_val, img0 = self.cap.read() | |||
path = self.files[self.count] | |||
self.new_video(path) | |||
ret_val, img0 = self.cap.read() | |||
self.frame += 1 | |||
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ' | |||
@@ -390,7 +387,7 @@ class LoadStreams: | |||
def img2label_paths(img_paths): | |||
# Define label paths as a function of image paths | |||
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings | |||
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings | |||
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths] | |||
@@ -456,7 +453,7 @@ class LoadImagesAndLabels(Dataset): | |||
# Display cache | |||
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total | |||
if exists and LOCAL_RANK in (-1, 0): | |||
if exists and LOCAL_RANK in {-1, 0}: | |||
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt" | |||
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results | |||
if cache['msgs']: |
@@ -84,7 +84,7 @@ def set_logging(name=None, verbose=VERBOSE): | |||
for h in logging.root.handlers: | |||
logging.root.removeHandler(h) # remove all handlers associated with the root logger object | |||
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings | |||
level = logging.INFO if (verbose and rank in (-1, 0)) else logging.WARNING | |||
level = logging.INFO if verbose and rank in {-1, 0} else logging.WARNING | |||
log = logging.getLogger(name) | |||
log.setLevel(level) | |||
handler = logging.StreamHandler() |
@@ -22,7 +22,7 @@ try: | |||
import wandb | |||
assert hasattr(wandb, '__version__') # verify package import not local dir | |||
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in [0, -1]: | |||
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}: | |||
try: | |||
wandb_login_success = wandb.login(timeout=30) | |||
except wandb.errors.UsageError: # known non-TTY terminal issue | |||
@@ -176,7 +176,7 @@ class Loggers(): | |||
if not self.opt.evolve: | |||
wandb.log_artifact(str(best if best.exists() else last), | |||
type='model', | |||
name='run_' + self.wandb.wandb_run.id + '_model', | |||
name=f'run_{self.wandb.wandb_run.id}_model', | |||
aliases=['latest', 'best', 'stripped']) | |||
self.wandb.finish_run() | |||
@@ -55,32 +55,31 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names | |||
i = pred_cls == c | |||
n_l = nt[ci] # number of labels | |||
n_p = i.sum() # number of predictions | |||
if n_p == 0 or n_l == 0: | |||
continue | |||
else: | |||
# Accumulate FPs and TPs | |||
fpc = (1 - tp[i]).cumsum(0) | |||
tpc = tp[i].cumsum(0) | |||
# Recall | |||
recall = tpc / (n_l + eps) # recall curve | |||
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases | |||
# Accumulate FPs and TPs | |||
fpc = (1 - tp[i]).cumsum(0) | |||
tpc = tp[i].cumsum(0) | |||
# Recall | |||
recall = tpc / (n_l + eps) # recall curve | |||
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases | |||
# Precision | |||
precision = tpc / (tpc + fpc) # precision curve | |||
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score | |||
# Precision | |||
precision = tpc / (tpc + fpc) # precision curve | |||
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score | |||
# AP from recall-precision curve | |||
for j in range(tp.shape[1]): | |||
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) | |||
if plot and j == 0: | |||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 | |||
# AP from recall-precision curve | |||
for j in range(tp.shape[1]): | |||
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) | |||
if plot and j == 0: | |||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 | |||
# Compute F1 (harmonic mean of precision and recall) | |||
f1 = 2 * p * r / (p + r + eps) | |||
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data | |||
names = {i: v for i, v in enumerate(names)} # to dict | |||
names = dict(enumerate(names)) # to dict | |||
if plot: | |||
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names) | |||
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1') | |||
@@ -314,7 +313,7 @@ def wh_iou(wh1, wh2): | |||
# Plots ---------------------------------------------------------------------------------------------------------------- | |||
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()): | |||
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()): | |||
# Precision-recall curve | |||
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) | |||
py = np.stack(py, axis=1) | |||
@@ -331,11 +330,11 @@ def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()): | |||
ax.set_xlim(0, 1) | |||
ax.set_ylim(0, 1) | |||
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") | |||
fig.savefig(Path(save_dir), dpi=250) | |||
fig.savefig(save_dir, dpi=250) | |||
plt.close() | |||
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'): | |||
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'): | |||
# Metric-confidence curve | |||
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) | |||
@@ -352,5 +351,5 @@ def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence' | |||
ax.set_xlim(0, 1) | |||
ax.set_ylim(0, 1) | |||
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") | |||
fig.savefig(Path(save_dir), dpi=250) | |||
fig.savefig(save_dir, dpi=250) | |||
plt.close() |
@@ -50,9 +50,9 @@ def device_count(): | |||
def select_device(device='', batch_size=0, newline=True): | |||
# device = 'cpu' or '0' or '0,1,2,3' | |||
# device = None or 'cpu' or 0 or '0' or '0,1,2,3' | |||
s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} ' | |||
device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0' | |||
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' | |||
cpu = device == 'cpu' | |||
if cpu: | |||
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False | |||
@@ -97,7 +97,8 @@ def profile(input, ops, n=10, device=None): | |||
# profile(input, [m1, m2], n=100) # profile over 100 iterations | |||
results = [] | |||
device = device or select_device() | |||
if not isinstance(device, torch.device): | |||
device = select_device(device) | |||
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" | |||
f"{'input':>24s}{'output':>24s}") | |||
@@ -127,9 +128,8 @@ def profile(input, ops, n=10, device=None): | |||
tf += (t[1] - t[0]) * 1000 / n # ms per op forward | |||
tb += (t[2] - t[1]) * 1000 / n # ms per op backward | |||
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) | |||
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' | |||
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' | |||
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters | |||
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes | |||
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters | |||
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') | |||
results.append([p, flops, mem, tf, tb, s_in, s_out]) | |||
except Exception as e: | |||
@@ -227,7 +227,7 @@ def model_info(model, verbose=False, img_size=640): | |||
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs | |||
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float | |||
fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs | |||
except (ImportError, Exception): | |||
except Exception: | |||
fs = '' | |||
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model' | |||
@@ -238,13 +238,12 @@ def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) | |||
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple | |||
if ratio == 1.0: | |||
return img | |||
else: | |||
h, w = img.shape[2:] | |||
s = (int(h * ratio), int(w * ratio)) # new size | |||
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize | |||
if not same_shape: # pad/crop img | |||
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) | |||
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean | |||
h, w = img.shape[2:] | |||
s = (int(h * ratio), int(w * ratio)) # new size | |||
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize | |||
if not same_shape: # pad/crop img | |||
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) | |||
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean | |||
def copy_attr(a, b, include=(), exclude=()): |