|
|
@@ -5,9 +5,11 @@ import math |
|
|
|
import numpy as np |
|
|
|
import torch |
|
|
|
import torch.nn as nn |
|
|
|
from PIL import Image, ImageDraw |
|
|
|
|
|
|
|
from utils.datasets import letterbox |
|
|
|
from utils.general import non_max_suppression, make_divisible, scale_coords |
|
|
|
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh |
|
|
|
from utils.plots import color_list |
|
|
|
|
|
|
|
|
|
|
|
def autopad(k, p=None): # kernel, padding |
|
|
@@ -125,47 +127,94 @@ class autoShape(nn.Module): |
|
|
|
|
|
|
|
def __init__(self, model): |
|
|
|
super(autoShape, self).__init__() |
|
|
|
self.model = model |
|
|
|
self.model = model.eval() |
|
|
|
|
|
|
|
def forward(self, x, size=640, augment=False, profile=False): |
|
|
|
def forward(self, imgs, size=640, augment=False, profile=False): |
|
|
|
# supports inference from various sources. For height=720, width=1280, RGB images example inputs are: |
|
|
|
# opencv: x = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3) |
|
|
|
# PIL: x = Image.open('image.jpg') # HWC x(720,1280,3) |
|
|
|
# numpy: x = np.zeros((720,1280,3)) # HWC |
|
|
|
# torch: x = torch.zeros(16,3,720,1280) # BCHW |
|
|
|
# multiple: x = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images |
|
|
|
# opencv: imgs = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3) |
|
|
|
# PIL: imgs = Image.open('image.jpg') # HWC x(720,1280,3) |
|
|
|
# numpy: imgs = np.zeros((720,1280,3)) # HWC |
|
|
|
# torch: imgs = torch.zeros(16,3,720,1280) # BCHW |
|
|
|
# multiple: imgs = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images |
|
|
|
|
|
|
|
p = next(self.model.parameters()) # for device and type |
|
|
|
if isinstance(x, torch.Tensor): # torch |
|
|
|
return self.model(x.to(p.device).type_as(p), augment, profile) # inference |
|
|
|
if isinstance(imgs, torch.Tensor): # torch |
|
|
|
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference |
|
|
|
|
|
|
|
# Pre-process |
|
|
|
if not isinstance(x, list): |
|
|
|
x = [x] |
|
|
|
if not isinstance(imgs, list): |
|
|
|
imgs = [imgs] |
|
|
|
shape0, shape1 = [], [] # image and inference shapes |
|
|
|
batch = range(len(x)) # batch size |
|
|
|
batch = range(len(imgs)) # batch size |
|
|
|
for i in batch: |
|
|
|
x[i] = np.array(x[i]) # to numpy |
|
|
|
x[i] = x[i][:, :, :3] if x[i].ndim == 3 else np.tile(x[i][:, :, None], 3) # enforce 3ch input |
|
|
|
s = x[i].shape[:2] # HWC |
|
|
|
imgs[i] = np.array(imgs[i]) # to numpy |
|
|
|
imgs[i] = imgs[i][:, :, :3] if imgs[i].ndim == 3 else np.tile(imgs[i][:, :, None], 3) # enforce 3ch input |
|
|
|
s = imgs[i].shape[:2] # HWC |
|
|
|
shape0.append(s) # image shape |
|
|
|
g = (size / max(s)) # gain |
|
|
|
shape1.append([y * g for y in s]) |
|
|
|
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape |
|
|
|
x = [letterbox(x[i], new_shape=shape1, auto=False)[0] for i in batch] # pad |
|
|
|
x = [letterbox(imgs[i], new_shape=shape1, auto=False)[0] for i in batch] # pad |
|
|
|
x = np.stack(x, 0) if batch[-1] else x[0][None] # stack |
|
|
|
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW |
|
|
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 |
|
|
|
|
|
|
|
# Inference |
|
|
|
x = self.model(x, augment, profile) # forward |
|
|
|
x = non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS |
|
|
|
with torch.no_grad(): |
|
|
|
y = self.model(x, augment, profile)[0] # forward |
|
|
|
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS |
|
|
|
|
|
|
|
# Post-process |
|
|
|
for i in batch: |
|
|
|
if x[i] is not None: |
|
|
|
x[i][:, :4] = scale_coords(shape1, x[i][:, :4], shape0[i]) |
|
|
|
return x |
|
|
|
if y[i] is not None: |
|
|
|
y[i][:, :4] = scale_coords(shape1, y[i][:, :4], shape0[i]) |
|
|
|
|
|
|
|
return Detections(imgs, y, self.names) |
|
|
|
|
|
|
|
|
|
|
|
class Detections: |
|
|
|
# detections class for YOLOv5 inference results |
|
|
|
def __init__(self, imgs, pred, names=None): |
|
|
|
super(Detections, self).__init__() |
|
|
|
self.imgs = imgs # list of images as numpy arrays |
|
|
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) |
|
|
|
self.names = names # class names |
|
|
|
self.xyxy = pred # xyxy pixels |
|
|
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels |
|
|
|
gn = [torch.Tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.]) for im in imgs] # normalization gains |
|
|
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized |
|
|
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized |
|
|
|
|
|
|
|
def display(self, pprint=False, show=False, save=False): |
|
|
|
colors = color_list() |
|
|
|
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): |
|
|
|
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' |
|
|
|
if pred is not None: |
|
|
|
for c in pred[:, -1].unique(): |
|
|
|
n = (pred[:, -1] == c).sum() # detections per class |
|
|
|
str += f'{n} {self.names[int(c)]}s, ' # add to string |
|
|
|
if show or save: |
|
|
|
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np |
|
|
|
for *box, conf, cls in pred: # xyxy, confidence, class |
|
|
|
# str += '%s %.2f, ' % (names[int(cls)], conf) # label |
|
|
|
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot |
|
|
|
if save: |
|
|
|
f = f'results{i}.jpg' |
|
|
|
str += f"saved to '{f}'" |
|
|
|
img.save(f) # save |
|
|
|
if show: |
|
|
|
img.show(f'Image {i}') # show |
|
|
|
if pprint: |
|
|
|
print(str) |
|
|
|
|
|
|
|
def print(self): |
|
|
|
self.display(pprint=True) # print results |
|
|
|
|
|
|
|
def show(self): |
|
|
|
self.display(show=True) # show results |
|
|
|
|
|
|
|
def save(self): |
|
|
|
self.display(save=True) # save results |
|
|
|
|
|
|
|
|
|
|
|
class Flatten(nn.Module): |