* val.py refactor * cleanup * cleanup * cleanup * cleanup * save after eval * opt.imgsz bug fix * wandb refactor * dataloader to train_loader * capitalize global variables * runs/hub/exp to runs/detect/exp * refactor wandb logging * Refactor wandb operations (#4061) Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>modifyDataloader
@@ -21,7 +21,7 @@ from utils.datasets import LoadStreams, LoadImages | |||
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \ | |||
apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box | |||
from utils.plots import colors, plot_one_box | |||
from utils.torch_utils import select_device, load_classifier, time_synchronized | |||
from utils.torch_utils import select_device, load_classifier, time_sync | |||
@torch.no_grad() | |||
@@ -100,14 +100,14 @@ def run(weights='yolov5s.pt', # model.pt path(s) | |||
img = img.unsqueeze(0) | |||
# Inference | |||
t1 = time_synchronized() | |||
t1 = time_sync() | |||
pred = model(img, | |||
augment=augment, | |||
visualize=increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False)[0] | |||
# Apply NMS | |||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) | |||
t2 = time_synchronized() | |||
t2 = time_sync() | |||
# Apply Classifier | |||
if classify: |
@@ -1,5 +1,6 @@ | |||
# YOLOv5 common modules | |||
import logging | |||
from copy import copy | |||
from pathlib import Path, PosixPath | |||
@@ -15,7 +16,9 @@ from torch.cuda import amp | |||
from utils.datasets import exif_transpose, letterbox | |||
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box | |||
from utils.plots import colors, plot_one_box | |||
from utils.torch_utils import time_synchronized | |||
from utils.torch_utils import time_sync | |||
LOGGER = logging.getLogger(__name__) | |||
def autopad(k, p=None): # kernel, padding | |||
@@ -226,7 +229,7 @@ class AutoShape(nn.Module): | |||
self.model = model.eval() | |||
def autoshape(self): | |||
print('AutoShape already enabled, skipping... ') # model already converted to model.autoshape() | |||
LOGGER.info('AutoShape already enabled, skipping... ') # model already converted to model.autoshape() | |||
return self | |||
@torch.no_grad() | |||
@@ -240,7 +243,7 @@ class AutoShape(nn.Module): | |||
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) | |||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images | |||
t = [time_synchronized()] | |||
t = [time_sync()] | |||
p = next(self.model.parameters()) # for device and type | |||
if isinstance(imgs, torch.Tensor): # torch | |||
with amp.autocast(enabled=p.device.type != 'cpu'): | |||
@@ -270,19 +273,19 @@ class AutoShape(nn.Module): | |||
x = np.stack(x, 0) if n > 1 else x[0][None] # stack | |||
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW | |||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 | |||
t.append(time_synchronized()) | |||
t.append(time_sync()) | |||
with amp.autocast(enabled=p.device.type != 'cpu'): | |||
# Inference | |||
y = self.model(x, augment, profile)[0] # forward | |||
t.append(time_synchronized()) | |||
t.append(time_sync()) | |||
# Post-process | |||
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS | |||
for i in range(n): | |||
scale_coords(shape1, y[i][:, :4], shape0[i]) | |||
t.append(time_synchronized()) | |||
t.append(time_sync()) | |||
return Detections(imgs, y, files, t, self.names, x.shape) | |||
@@ -323,31 +326,33 @@ class Detections: | |||
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np | |||
if pprint: | |||
print(str.rstrip(', ')) | |||
LOGGER.info(str.rstrip(', ')) | |||
if show: | |||
im.show(self.files[i]) # show | |||
if save: | |||
f = self.files[i] | |||
im.save(save_dir / f) # save | |||
print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n') | |||
if i == self.n - 1: | |||
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to '{save_dir}'") | |||
if render: | |||
self.imgs[i] = np.asarray(im) | |||
def print(self): | |||
self.display(pprint=True) # print results | |||
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) | |||
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % | |||
self.t) | |||
def show(self): | |||
self.display(show=True) # show results | |||
def save(self, save_dir='runs/hub/exp'): | |||
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir | |||
def save(self, save_dir='runs/detect/exp'): | |||
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir | |||
self.display(save=True, save_dir=save_dir) # save results | |||
def crop(self, save_dir='runs/hub/exp'): | |||
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir | |||
def crop(self, save_dir='runs/detect/exp'): | |||
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir | |||
self.display(crop=True, save_dir=save_dir) # crop results | |||
print(f'Saved results to {save_dir}\n') | |||
LOGGER.info(f'Saved results to {save_dir}\n') | |||
def render(self): | |||
self.display(render=True) # render results |
@@ -5,7 +5,6 @@ Usage: | |||
""" | |||
import argparse | |||
import logging | |||
import sys | |||
from copy import deepcopy | |||
from pathlib import Path | |||
@@ -18,7 +17,7 @@ from models.experimental import * | |||
from utils.autoanchor import check_anchor_order | |||
from utils.general import make_divisible, check_file, set_logging | |||
from utils.plots import feature_visualization | |||
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ | |||
from utils.torch_utils import time_sync, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ | |||
select_device, copy_attr | |||
try: | |||
@@ -26,7 +25,7 @@ try: | |||
except ImportError: | |||
thop = None | |||
logger = logging.getLogger(__name__) | |||
LOGGER = logging.getLogger(__name__) | |||
class Detect(nn.Module): | |||
@@ -90,15 +89,15 @@ class Model(nn.Module): | |||
# Define model | |||
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels | |||
if nc and nc != self.yaml['nc']: | |||
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") | |||
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") | |||
self.yaml['nc'] = nc # override yaml value | |||
if anchors: | |||
logger.info(f'Overriding model.yaml anchors with anchors={anchors}') | |||
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') | |||
self.yaml['anchors'] = round(anchors) # override yaml value | |||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist | |||
self.names = [str(i) for i in range(self.yaml['nc'])] # default names | |||
self.inplace = self.yaml.get('inplace', True) | |||
# logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |||
# LOGGER.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |||
# Build strides, anchors | |||
m = self.model[-1] # Detect() | |||
@@ -110,12 +109,12 @@ class Model(nn.Module): | |||
check_anchor_order(m) | |||
self.stride = m.stride | |||
self._initialize_biases() # only run once | |||
# logger.info('Strides: %s' % m.stride.tolist()) | |||
# LOGGER.info('Strides: %s' % m.stride.tolist()) | |||
# Init weights, biases | |||
initialize_weights(self) | |||
self.info() | |||
logger.info('') | |||
LOGGER.info('') | |||
def forward(self, x, augment=False, profile=False, visualize=False): | |||
if augment: | |||
@@ -143,13 +142,13 @@ class Model(nn.Module): | |||
if profile: | |||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs | |||
t = time_synchronized() | |||
t = time_sync() | |||
for _ in range(10): | |||
_ = m(x) | |||
dt.append((time_synchronized() - t) * 100) | |||
dt.append((time_sync() - t) * 100) | |||
if m == self.model[0]: | |||
logger.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") | |||
logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') | |||
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") | |||
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') | |||
x = m(x) # run | |||
y.append(x if m.i in self.save else None) # save output | |||
@@ -158,7 +157,7 @@ class Model(nn.Module): | |||
feature_visualization(x, m.type, m.i, save_dir=visualize) | |||
if profile: | |||
logger.info('%.1fms total' % sum(dt)) | |||
LOGGER.info('%.1fms total' % sum(dt)) | |||
return x | |||
def _descale_pred(self, p, flips, scale, img_size): | |||
@@ -192,16 +191,16 @@ class Model(nn.Module): | |||
m = self.model[-1] # Detect() module | |||
for mi in m.m: # from | |||
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) | |||
logger.info( | |||
LOGGER.info( | |||
('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) | |||
# def _print_weights(self): | |||
# for m in self.model.modules(): | |||
# if type(m) is Bottleneck: | |||
# logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |||
# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers | |||
logger.info('Fusing layers... ') | |||
LOGGER.info('Fusing layers... ') | |||
for m in self.model.modules(): | |||
if type(m) is Conv and hasattr(m, 'bn'): | |||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv | |||
@@ -213,19 +212,19 @@ class Model(nn.Module): | |||
def nms(self, mode=True): # add or remove NMS module | |||
present = type(self.model[-1]) is NMS # last layer is NMS | |||
if mode and not present: | |||
logger.info('Adding NMS... ') | |||
LOGGER.info('Adding NMS... ') | |||
m = NMS() # module | |||
m.f = -1 # from | |||
m.i = self.model[-1].i + 1 # index | |||
self.model.add_module(name='%s' % m.i, module=m) # add | |||
self.eval() | |||
elif not mode and present: | |||
logger.info('Removing NMS... ') | |||
LOGGER.info('Removing NMS... ') | |||
self.model = self.model[:-1] # remove | |||
return self | |||
def autoshape(self): # add AutoShape module | |||
logger.info('Adding AutoShape... ') | |||
LOGGER.info('Adding AutoShape... ') | |||
m = AutoShape(self) # wrap model | |||
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes | |||
return m | |||
@@ -235,7 +234,7 @@ class Model(nn.Module): | |||
def parse_model(d, ch): # model_dict, input_channels(3) | |||
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) | |||
LOGGER.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) | |||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] | |||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |||
@@ -279,7 +278,7 @@ def parse_model(d, ch): # model_dict, input_channels(3) | |||
t = str(m)[8:-2].replace('__main__.', '') # module type | |||
np = sum([x.numel() for x in m_.parameters()]) # number params | |||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |||
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print | |||
LOGGER.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print | |||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |||
layers.append(m_) | |||
if i == 0: | |||
@@ -308,5 +307,5 @@ if __name__ == '__main__': | |||
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898) | |||
# from torch.utils.tensorboard import SummaryWriter | |||
# tb_writer = SummaryWriter('.') | |||
# logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/") | |||
# LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/") | |||
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph |
@@ -47,7 +47,7 @@ from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_di | |||
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume | |||
from utils.metrics import fitness | |||
logger = logging.getLogger(__name__) | |||
LOGGER = logging.getLogger(__name__) | |||
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html | |||
RANK = int(os.getenv('RANK', -1)) | |||
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) | |||
@@ -73,7 +73,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
if isinstance(hyp, str): | |||
with open(hyp) as f: | |||
hyp = yaml.safe_load(f) # load hyps dict | |||
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) | |||
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) | |||
# Save run settings | |||
with open(save_dir / 'hyp.yaml', 'w') as f: | |||
@@ -94,7 +94,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
# TensorBoard | |||
if not evolve: | |||
prefix = colorstr('tensorboard: ') | |||
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") | |||
LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") | |||
loggers['tb'] = SummaryWriter(str(save_dir)) | |||
# W&B | |||
@@ -123,7 +123,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
state_dict = ckpt['model'].float().state_dict() # to FP32 | |||
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect | |||
model.load_state_dict(state_dict, strict=False) # load | |||
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report | |||
LOGGER.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report | |||
else: | |||
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create | |||
with torch_distributed_zero_first(RANK): | |||
@@ -143,7 +143,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
nbs = 64 # nominal batch size | |||
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing | |||
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay | |||
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") | |||
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") | |||
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups | |||
for k, v in model.named_modules(): | |||
@@ -161,7 +161,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay | |||
optimizer.add_param_group({'params': pg2}) # add pg2 (biases) | |||
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) | |||
LOGGER.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) | |||
del pg0, pg1, pg2 | |||
# Scheduler https://arxiv.org/pdf/1812.01187.pdf | |||
@@ -198,7 +198,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
if resume: | |||
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) | |||
if epochs < start_epoch: | |||
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % | |||
LOGGER.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % | |||
(weights, ckpt['epoch'], epochs)) | |||
epochs += ckpt['epoch'] # finetune additional epochs | |||
@@ -207,7 +207,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
# Image sizes | |||
gs = max(int(model.stride.max()), 32) # grid size (max stride) | |||
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) | |||
imgsz, imgsz_val = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples | |||
imgsz = check_img_size(opt.imgsz, gs) # verify imgsz is gs-multiple | |||
# DP mode | |||
if cuda and RANK == -1 and torch.cuda.device_count() > 1: | |||
@@ -219,33 +219,31 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
if opt.sync_bn and cuda and RANK != -1: | |||
raise Exception('can not train with --sync-bn, known issue https://github.com/ultralytics/yolov5/issues/3998') | |||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) | |||
logger.info('Using SyncBatchNorm()') | |||
LOGGER.info('Using SyncBatchNorm()') | |||
# Trainloader | |||
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, | |||
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK, | |||
workers=workers, | |||
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) | |||
train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, | |||
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK, | |||
workers=workers, image_weights=opt.image_weights, quad=opt.quad, | |||
prefix=colorstr('train: ')) | |||
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class | |||
nb = len(dataloader) # number of batches | |||
nb = len(train_loader) # number of batches | |||
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1) | |||
# Process 0 | |||
if RANK in [-1, 0]: | |||
valloader = create_dataloader(val_path, imgsz_val, batch_size // WORLD_SIZE * 2, gs, single_cls, | |||
hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1, | |||
workers=workers, | |||
pad=0.5, prefix=colorstr('val: '))[0] | |||
val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, | |||
hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1, | |||
workers=workers, pad=0.5, | |||
prefix=colorstr('val: '))[0] | |||
if not resume: | |||
labels = np.concatenate(dataset.labels, 0) | |||
c = torch.tensor(labels[:, 0]) # classes | |||
# c = torch.tensor(labels[:, 0]) # classes | |||
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency | |||
# model._initialize_biases(cf.to(device)) | |||
if plots: | |||
plot_labels(labels, names, save_dir, loggers) | |||
if loggers['tb']: | |||
loggers['tb'].add_histogram('classes', c, 0) # TensorBoard | |||
# Anchors | |||
if not opt.noautoanchor: | |||
@@ -277,8 +275,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
scheduler.last_epoch = start_epoch - 1 # do not move | |||
scaler = amp.GradScaler(enabled=cuda) | |||
compute_loss = ComputeLoss(model) # init loss class | |||
logger.info(f'Image sizes {imgsz} train, {imgsz_val} val\n' | |||
f'Using {dataloader.num_workers} dataloader workers\n' | |||
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' | |||
f'Using {train_loader.num_workers} dataloader workers\n' | |||
f'Logging results to {save_dir}\n' | |||
f'Starting training for {epochs} epochs...') | |||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ | |||
@@ -304,9 +302,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
mloss = torch.zeros(4, device=device) # mean losses | |||
if RANK != -1: | |||
dataloader.sampler.set_epoch(epoch) | |||
pbar = enumerate(dataloader) | |||
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) | |||
train_loader.sampler.set_epoch(epoch) | |||
pbar = enumerate(train_loader) | |||
LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) | |||
if RANK in [-1, 0]: | |||
pbar = tqdm(pbar, total=nb) # progress bar | |||
optimizer.zero_grad() | |||
@@ -389,10 +387,10 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
wandb_logger.current_epoch = epoch + 1 | |||
results, maps, _ = val.run(data_dict, | |||
batch_size=batch_size // WORLD_SIZE * 2, | |||
imgsz=imgsz_val, | |||
imgsz=imgsz, | |||
model=ema.ema, | |||
single_cls=single_cls, | |||
dataloader=valloader, | |||
dataloader=val_loader, | |||
save_dir=save_dir, | |||
save_json=is_coco and final_epoch, | |||
verbose=nc < 50 and final_epoch, | |||
@@ -444,7 +442,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
# end epoch ---------------------------------------------------------------------------------------------------- | |||
# end training ----------------------------------------------------------------------------------------------------- | |||
if RANK in [-1, 0]: | |||
logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n') | |||
LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n') | |||
if plots: | |||
plot_results(save_dir=save_dir) # save as results.png | |||
if loggers['wandb']: | |||
@@ -457,10 +455,10 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary | |||
for m in [last, best] if best.exists() else [last]: # speed, mAP tests | |||
results, _, _ = val.run(data_dict, | |||
batch_size=batch_size // WORLD_SIZE * 2, | |||
imgsz=imgsz_val, | |||
imgsz=imgsz, | |||
model=attempt_load(m, device).half(), | |||
single_cls=single_cls, | |||
dataloader=valloader, | |||
dataloader=val_loader, | |||
save_dir=save_dir, | |||
save_json=True, | |||
plots=False) | |||
@@ -487,7 +485,7 @@ def parse_opt(known=False): | |||
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path') | |||
parser.add_argument('--epochs', type=int, default=300) | |||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') | |||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, val] image sizes') | |||
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') | |||
parser.add_argument('--rect', action='store_true', help='rectangular training') | |||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') | |||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') | |||
@@ -534,12 +532,11 @@ def main(opt): | |||
with open(Path(ckpt).parent.parent / 'opt.yaml') as f: | |||
opt = argparse.Namespace(**yaml.safe_load(f)) # replace | |||
opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate | |||
logger.info('Resuming training from %s' % ckpt) | |||
LOGGER.info(f'Resuming training from {ckpt}') | |||
else: | |||
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') | |||
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files | |||
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' | |||
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, val) | |||
opt.name = 'evolve' if opt.evolve else opt.name | |||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) | |||
@@ -602,7 +599,7 @@ def main(opt): | |||
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices | |||
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here | |||
if opt.bucket: | |||
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists | |||
os.system(f'gsutil cp gs://{opt.bucket}/evolve.txt .') # download evolve.txt if exists | |||
for _ in range(opt.evolve): # generations to evolve | |||
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate |
@@ -22,17 +22,16 @@ from PIL import Image, ExifTags | |||
from torch.utils.data import Dataset | |||
from tqdm import tqdm | |||
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective, cutout | |||
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective | |||
from utils.general import check_requirements, check_file, check_dataset, xywh2xyxy, xywhn2xyxy, xyxy2xywhn, \ | |||
xyn2xy, segments2boxes, clean_str | |||
from utils.torch_utils import torch_distributed_zero_first | |||
# Parameters | |||
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' | |||
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes | |||
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes | |||
num_threads = min(8, os.cpu_count()) # number of multiprocessing threads | |||
logger = logging.getLogger(__name__) | |||
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' | |||
IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes | |||
VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes | |||
NUM_THREADS = min(8, os.cpu_count()) # number of multiprocessing threads | |||
# Get orientation exif tag | |||
for orientation in ExifTags.TAGS.keys(): | |||
@@ -164,8 +163,8 @@ class LoadImages: # for inference | |||
else: | |||
raise Exception(f'ERROR: {p} does not exist') | |||
images = [x for x in files if x.split('.')[-1].lower() in img_formats] | |||
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] | |||
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] | |||
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] | |||
ni, nv = len(images), len(videos) | |||
self.img_size = img_size | |||
@@ -179,7 +178,7 @@ class LoadImages: # for inference | |||
else: | |||
self.cap = None | |||
assert self.nf > 0, f'No images or videos found in {p}. ' \ | |||
f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' | |||
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}' | |||
def __iter__(self): | |||
self.count = 0 | |||
@@ -389,11 +388,11 @@ class LoadImagesAndLabels(Dataset): # for training/testing | |||
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) | |||
else: | |||
raise Exception(f'{prefix}{p} does not exist') | |||
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) | |||
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS]) | |||
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib | |||
assert self.img_files, f'{prefix}No images found' | |||
except Exception as e: | |||
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}') | |||
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}') | |||
# Check cache | |||
self.label_files = img2label_paths(self.img_files) # labels | |||
@@ -411,7 +410,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing | |||
tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results | |||
if cache['msgs']: | |||
logging.info('\n'.join(cache['msgs'])) # display warnings | |||
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}' | |||
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}' | |||
# Read cache | |||
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items | |||
@@ -460,7 +459,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing | |||
if cache_images: | |||
gb = 0 # Gigabytes of cached images | |||
self.img_hw0, self.img_hw = [None] * n, [None] * n | |||
results = ThreadPool(num_threads).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) | |||
results = ThreadPool(NUM_THREADS).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) | |||
pbar = tqdm(enumerate(results), total=n) | |||
for i, x in pbar: | |||
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i) | |||
@@ -473,7 +472,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing | |||
x = {} # dict | |||
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages | |||
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..." | |||
with Pool(num_threads) as pool: | |||
with Pool(NUM_THREADS) as pool: | |||
pbar = tqdm(pool.imap_unordered(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))), | |||
desc=desc, total=len(self.img_files)) | |||
for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: | |||
@@ -491,7 +490,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing | |||
if msgs: | |||
logging.info('\n'.join(msgs)) | |||
if nf == 0: | |||
logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}') | |||
logging.info(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}') | |||
x['hash'] = get_hash(self.label_files + self.img_files) | |||
x['results'] = nf, nm, ne, nc, len(self.img_files) | |||
x['msgs'] = msgs # warnings | |||
@@ -789,7 +788,7 @@ def extract_boxes(path='../datasets/coco128'): # from utils.datasets import *; | |||
files = list(path.rglob('*.*')) | |||
n = len(files) # number of files | |||
for im_file in tqdm(files, total=n): | |||
if im_file.suffix[1:] in img_formats: | |||
if im_file.suffix[1:] in IMG_FORMATS: | |||
# image | |||
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB | |||
h, w = im.shape[:2] | |||
@@ -825,7 +824,7 @@ def autosplit(path='../datasets/coco128/images', weights=(0.9, 0.1, 0.0), annota | |||
annotated_only: Only use images with an annotated txt file | |||
""" | |||
path = Path(path) # images dir | |||
files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only | |||
files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in IMG_FORMATS], []) # image files only | |||
n = len(files) # number of files | |||
random.seed(0) # for reproducibility | |||
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split | |||
@@ -850,7 +849,7 @@ def verify_image_label(args): | |||
im.verify() # PIL verify | |||
shape = exif_size(im) # image size | |||
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' | |||
assert im.format.lower() in img_formats, f'invalid image format {im.format}' | |||
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' | |||
if im.format.lower() in ('jpg', 'jpeg'): | |||
with open(im_file, 'rb') as f: | |||
f.seek(-2, 2) |
@@ -22,7 +22,7 @@ try: | |||
import thop # for FLOPs computation | |||
except ImportError: | |||
thop = None | |||
logger = logging.getLogger(__name__) | |||
LOGGER = logging.getLogger(__name__) | |||
@contextmanager | |||
@@ -85,11 +85,11 @@ def select_device(device='', batch_size=None): | |||
else: | |||
s += 'CPU\n' | |||
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe | |||
LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe | |||
return torch.device('cuda:0' if cuda else 'cpu') | |||
def time_synchronized(): | |||
def time_sync(): | |||
# pytorch-accurate time | |||
if torch.cuda.is_available(): | |||
torch.cuda.synchronize() | |||
@@ -118,12 +118,12 @@ def profile(x, ops, n=100, device=None): | |||
flops = 0 | |||
for _ in range(n): | |||
t[0] = time_synchronized() | |||
t[0] = time_sync() | |||
y = m(x) | |||
t[1] = time_synchronized() | |||
t[1] = time_sync() | |||
try: | |||
_ = y.sum().backward() | |||
t[2] = time_synchronized() | |||
t[2] = time_sync() | |||
except: # no backward method | |||
t[2] = float('nan') | |||
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward | |||
@@ -231,7 +231,7 @@ def model_info(model, verbose=False, img_size=640): | |||
except (ImportError, Exception): | |||
fs = '' | |||
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") | |||
LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") | |||
def load_classifier(name='resnet101', n=2): |
@@ -98,7 +98,14 @@ class WandbLogger(): | |||
def __init__(self, opt, name, run_id, data_dict, job_type='Training'): | |||
# Pre-training routine -- | |||
self.job_type = job_type | |||
self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict | |||
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run | |||
self.val_artifact, self.train_artifact = None, None | |||
self.train_artifact_path, self.val_artifact_path = None, None | |||
self.result_artifact = None | |||
self.val_table, self.result_table = None, None | |||
self.data_dict = data_dict | |||
self.bbox_media_panel_images = [] | |||
self.val_table_path_map = None | |||
# It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call | |||
if isinstance(opt.resume, str): # checks resume from artifact | |||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): | |||
@@ -156,25 +163,27 @@ class WandbLogger(): | |||
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \ | |||
config.opt['hyp'] | |||
data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume | |||
if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download | |||
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download | |||
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'), | |||
opt.artifact_alias) | |||
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'), | |||
opt.artifact_alias) | |||
self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None | |||
if self.train_artifact_path is not None: | |||
train_path = Path(self.train_artifact_path) / 'data/images/' | |||
data_dict['train'] = str(train_path) | |||
if self.val_artifact_path is not None: | |||
val_path = Path(self.val_artifact_path) / 'data/images/' | |||
data_dict['val'] = str(val_path) | |||
self.val_table = self.val_artifact.get("val") | |||
self.map_val_table_path() | |||
wandb.log({"validation dataset": self.val_table}) | |||
if self.train_artifact_path is not None: | |||
train_path = Path(self.train_artifact_path) / 'data/images/' | |||
data_dict['train'] = str(train_path) | |||
if self.val_artifact_path is not None: | |||
val_path = Path(self.val_artifact_path) / 'data/images/' | |||
data_dict['val'] = str(val_path) | |||
if self.val_artifact is not None: | |||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") | |||
self.result_table = wandb.Table(["epoch", "id", "ground truth", "prediction", "avg_confidence"]) | |||
self.val_table = self.val_artifact.get("val") | |||
if self.val_table_path_map is None: | |||
self.map_val_table_path() | |||
wandb.log({"validation dataset": self.val_table}) | |||
if opt.bbox_interval == -1: | |||
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 | |||
return data_dict | |||
@@ -182,7 +191,7 @@ class WandbLogger(): | |||
def download_dataset_artifact(self, path, alias): | |||
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX): | |||
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) | |||
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\","/")) | |||
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/")) | |||
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'" | |||
datadir = dataset_artifact.download() | |||
return datadir, dataset_artifact | |||
@@ -246,10 +255,10 @@ class WandbLogger(): | |||
return path | |||
def map_val_table_path(self): | |||
self.val_table_map = {} | |||
self.val_table_path_map = {} | |||
print("Mapping dataset") | |||
for i, data in enumerate(tqdm(self.val_table.data)): | |||
self.val_table_map[data[3]] = data[0] | |||
self.val_table_path_map[data[3]] = data[0] | |||
def create_dataset_table(self, dataset, class_to_id, name='dataset'): | |||
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging | |||
@@ -283,7 +292,6 @@ class WandbLogger(): | |||
return artifact | |||
def log_training_progress(self, predn, path, names): | |||
if self.val_table and self.result_table: | |||
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()]) | |||
box_data = [] | |||
total_conf = 0 | |||
@@ -297,7 +305,7 @@ class WandbLogger(): | |||
"domain": "pixel"}) | |||
total_conf = total_conf + conf | |||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space | |||
id = self.val_table_map[Path(path).name] | |||
id = self.val_table_path_map[Path(path).name] | |||
self.result_table.add_data(self.current_epoch, | |||
id, | |||
self.val_table.data[id][1], | |||
@@ -305,6 +313,22 @@ class WandbLogger(): | |||
total_conf / max(1, len(box_data)) | |||
) | |||
def val_one_image(self, pred, predn, path, names, im): | |||
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact | |||
self.log_training_progress(predn, path, names) | |||
else: # Default to bbox media panelif Val artifact not found | |||
log_imgs = min(self.log_imgs, 100) | |||
if len(self.bbox_media_panel_images) < log_imgs and self.current_epoch > 0: | |||
if self.current_epoch % self.bbox_interval == 0: | |||
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, | |||
"class_id": int(cls), | |||
"box_caption": "%s %.3f" % (names[cls], conf), | |||
"scores": {"class_score": conf}, | |||
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] | |||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space | |||
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name)) | |||
def log(self, log_dict): | |||
if self.wandb_run: | |||
for key, value in log_dict.items(): | |||
@@ -313,13 +337,16 @@ class WandbLogger(): | |||
def end_epoch(self, best_result=False): | |||
if self.wandb_run: | |||
with all_logging_disabled(): | |||
if self.bbox_media_panel_images: | |||
self.log_dict["Bounding Box Debugger/Images"] = self.bbox_media_panel_images | |||
wandb.log(self.log_dict) | |||
self.log_dict = {} | |||
self.bbox_media_panel_images = [] | |||
if self.result_artifact: | |||
self.result_artifact.add(self.result_table, 'result') | |||
wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), | |||
('best' if best_result else '')]) | |||
wandb.log({"evaluation": self.result_table}) | |||
self.result_table = wandb.Table(["epoch", "id", "ground truth", "prediction", "avg_confidence"]) | |||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") |
@@ -25,7 +25,52 @@ from utils.general import coco80_to_coco91_class, check_dataset, check_file, che | |||
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr | |||
from utils.metrics import ap_per_class, ConfusionMatrix | |||
from utils.plots import plot_images, output_to_target, plot_study_txt | |||
from utils.torch_utils import select_device, time_synchronized | |||
from utils.torch_utils import select_device, time_sync | |||
def save_one_txt(predn, save_conf, shape, file): | |||
# Save one txt result | |||
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh | |||
for *xyxy, conf, cls in predn.tolist(): | |||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | |||
with open(file, 'a') as f: | |||
f.write(('%g ' * len(line)).rstrip() % line + '\n') | |||
def save_one_json(predn, jdict, path, class_map): | |||
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |||
image_id = int(path.stem) if path.stem.isnumeric() else path.stem | |||
box = xyxy2xywh(predn[:, :4]) # xywh | |||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |||
for p, b in zip(predn.tolist(), box.tolist()): | |||
jdict.append({'image_id': image_id, | |||
'category_id': class_map[int(p[5])], | |||
'bbox': [round(x, 3) for x in b], | |||
'score': round(p[4], 5)}) | |||
def process_batch(predictions, labels, iouv): | |||
# Evaluate 1 batch of predictions | |||
correct = torch.zeros(predictions.shape[0], len(iouv), dtype=torch.bool, device=iouv.device) | |||
detected = [] # label indices | |||
tcls, pcls = labels[:, 0], predictions[:, 5] | |||
nl = labels.shape[0] # number of labels | |||
for cls in torch.unique(tcls): | |||
ti = (cls == tcls).nonzero().view(-1) # label indices | |||
pi = (cls == pcls).nonzero().view(-1) # prediction indices | |||
if pi.shape[0]: # find detections | |||
ious, i = box_iou(predictions[pi, 0:4], labels[ti, 1:5]).max(1) # best ious, indices | |||
detected_set = set() | |||
for j in (ious > iouv[0]).nonzero(): | |||
d = ti[i[j]] # detected label | |||
if d.item() not in detected_set: | |||
detected_set.add(d.item()) | |||
detected.append(d) # append detections | |||
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn | |||
if len(detected) == nl: # all labels already located in image | |||
break | |||
return correct | |||
@torch.no_grad() | |||
@@ -43,7 +88,7 @@ def run(data, | |||
save_txt=False, # save results to *.txt | |||
save_hybrid=False, # save label+prediction hybrid results to *.txt | |||
save_conf=False, # save confidences in --save-txt labels | |||
save_json=False, # save a cocoapi-compatible JSON results file | |||
save_json=False, # save a COCO-JSON results file | |||
project='runs/val', # save to project/name | |||
name='exp', # save to project/name | |||
exist_ok=False, # existing project/name ok, do not increment | |||
@@ -93,10 +138,6 @@ def run(data, | |||
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 | |||
niou = iouv.numel() | |||
# Logging | |||
log_imgs = 0 | |||
if wandb_logger and wandb_logger.wandb: | |||
log_imgs = min(wandb_logger.log_imgs, 100) | |||
# Dataloader | |||
if not training: | |||
if device.type != 'cpu': | |||
@@ -108,24 +149,24 @@ def run(data, | |||
seen = 0 | |||
confusion_matrix = ConfusionMatrix(nc=nc) | |||
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} | |||
coco91class = coco80_to_coco91_class() | |||
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) | |||
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') | |||
p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. | |||
loss = torch.zeros(3, device=device) | |||
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] | |||
jdict, stats, ap, ap_class = [], [], [], [] | |||
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): | |||
t_ = time_synchronized() | |||
t_ = time_sync() | |||
img = img.to(device, non_blocking=True) | |||
img = img.half() if half else img.float() # uint8 to fp16/32 | |||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |||
targets = targets.to(device) | |||
nb, _, height, width = img.shape # batch size, channels, height, width | |||
t = time_synchronized() | |||
t = time_sync() | |||
t0 += t - t_ | |||
# Run model | |||
out, train_out = model(img, augment=augment) # inference and training outputs | |||
t1 += time_synchronized() - t | |||
t1 += time_sync() - t | |||
# Compute loss | |||
if compute_loss: | |||
@@ -134,16 +175,16 @@ def run(data, | |||
# Run NMS | |||
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels | |||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling | |||
t = time_synchronized() | |||
t = time_sync() | |||
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) | |||
t2 += time_synchronized() - t | |||
t2 += time_sync() - t | |||
# Statistics per image | |||
for si, pred in enumerate(out): | |||
labels = targets[targets[:, 0] == si, 1:] | |||
nl = len(labels) | |||
tcls = labels[:, 0].tolist() if nl else [] # target class | |||
path = Path(paths[si]) | |||
path, shape = Path(paths[si]), shapes[si][0] | |||
seen += 1 | |||
if len(pred) == 0: | |||
@@ -155,76 +196,27 @@ def run(data, | |||
if single_cls: | |||
pred[:, 5] = 0 | |||
predn = pred.clone() | |||
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred | |||
scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred | |||
# Append to text file | |||
if save_txt: | |||
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh | |||
for *xyxy, conf, cls in predn.tolist(): | |||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | |||
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: | |||
f.write(('%g ' * len(line)).rstrip() % line + '\n') | |||
# W&B logging - Media Panel plots | |||
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation | |||
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0: | |||
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, | |||
"class_id": int(cls), | |||
"box_caption": "%s %.3f" % (names[cls], conf), | |||
"scores": {"class_score": conf}, | |||
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] | |||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space | |||
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name)) | |||
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None | |||
# Append to pycocotools JSON dictionary | |||
if save_json: | |||
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... | |||
image_id = int(path.stem) if path.stem.isnumeric() else path.stem | |||
box = xyxy2xywh(predn[:, :4]) # xywh | |||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |||
for p, b in zip(pred.tolist(), box.tolist()): | |||
jdict.append({'image_id': image_id, | |||
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), | |||
'bbox': [round(x, 3) for x in b], | |||
'score': round(p[4], 5)}) | |||
# Assign all predictions as incorrect | |||
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) | |||
# Evaluate | |||
if nl: | |||
detected = [] # target indices | |||
tcls_tensor = labels[:, 0] | |||
# target boxes | |||
tbox = xywh2xyxy(labels[:, 1:5]) | |||
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels | |||
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes | |||
scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels | |||
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels | |||
correct = process_batch(predn, labelsn, iouv) | |||
if plots: | |||
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1)) | |||
# Per target class | |||
for cls in torch.unique(tcls_tensor): | |||
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # target indices | |||
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # prediction indices | |||
# Search for detections | |||
if pi.shape[0]: | |||
# Prediction to target ious | |||
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices | |||
# Append detections | |||
detected_set = set() | |||
for j in (ious > iouv[0]).nonzero(as_tuple=False): | |||
d = ti[i[j]] # detected target | |||
if d.item() not in detected_set: | |||
detected_set.add(d.item()) | |||
detected.append(d) | |||
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn | |||
if len(detected) == nl: # all targets already located in image | |||
break | |||
# Append statistics (correct, conf, pcls, tcls) | |||
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) | |||
confusion_matrix.process_batch(predn, labelsn) | |||
else: | |||
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) | |||
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls) | |||
# Save/log | |||
if save_txt: | |||
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt')) | |||
if save_json: | |||
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary | |||
if wandb_logger: | |||
wandb_logger.val_one_image(pred, predn, path, names, img[si]) | |||
# Plot images | |||
if plots and batch_i < 3: | |||
@@ -264,15 +256,13 @@ def run(data, | |||
if wandb_logger and wandb_logger.wandb: | |||
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('val*.jpg'))] | |||
wandb_logger.log({"Validation": val_batches}) | |||
if wandb_images: | |||
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images}) | |||
# Save JSON | |||
if save_json and len(jdict): | |||
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights | |||
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json | |||
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json | |||
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) | |||
print(f'\nEvaluating pycocotools mAP... saving {pred_json}...') | |||
with open(pred_json, 'w') as f: | |||
json.dump(jdict, f) | |||
@@ -320,7 +310,7 @@ def parse_opt(): | |||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |||
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') | |||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |||
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') | |||
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') | |||
parser.add_argument('--project', default='runs/val', help='save to project/name') | |||
parser.add_argument('--name', default='exp', help='save to project/name') | |||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |