|
|
@@ -866,9 +866,6 @@ def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): |
|
|
|
x = x[np.argsort(-fitness(x))] # sort |
|
|
|
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness |
|
|
|
|
|
|
|
if bucket: |
|
|
|
os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt |
|
|
|
|
|
|
|
# Save yaml |
|
|
|
for i, k in enumerate(hyp.keys()): |
|
|
|
hyp[k] = float(x[0, i + 7]) |
|
|
@@ -878,6 +875,9 @@ def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): |
|
|
|
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') |
|
|
|
yaml.dump(hyp, f, sort_keys=False) |
|
|
|
|
|
|
|
if bucket: |
|
|
|
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload |
|
|
|
|
|
|
|
|
|
|
|
def apply_classifier(x, model, img, im0): |
|
|
|
# applies a second stage classifier to yolo outputs |
|
|
@@ -1273,4 +1273,3 @@ def plot_results(start=0, stop=0, bucket='', id=(), labels=(), |
|
|
|
fig.tight_layout() |
|
|
|
ax[1].legend() |
|
|
|
fig.savefig(Path(save_dir) / 'results.png', dpi=200) |
|
|
|
|