|
|
@@ -0,0 +1,101 @@ |
|
|
|
# xView 2018 dataset https://challenge.xviewdataset.org |
|
|
|
# ----> NOTE: DOWNLOAD DATA MANUALLY from URL above and unzip to /datasets/xView before running train command below |
|
|
|
# Train command: python train.py --data xView.yaml |
|
|
|
# Default dataset location is next to YOLOv5: |
|
|
|
# /parent |
|
|
|
# /datasets/xView |
|
|
|
# /yolov5 |
|
|
|
|
|
|
|
|
|
|
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
|
|
|
path: ../datasets/xView # dataset root dir |
|
|
|
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images |
|
|
|
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images |
|
|
|
|
|
|
|
# Classes |
|
|
|
nc: 60 # number of classes |
|
|
|
names: [ 'Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus', |
|
|
|
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer', |
|
|
|
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car', |
|
|
|
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge', |
|
|
|
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane', |
|
|
|
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck', |
|
|
|
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed', |
|
|
|
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad', |
|
|
|
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower' ] # class names |
|
|
|
|
|
|
|
|
|
|
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
|
|
|
download: | |
|
|
|
import json |
|
|
|
import os |
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
from PIL import Image |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
from utils.datasets import autosplit |
|
|
|
from utils.general import download, xyxy2xywhn |
|
|
|
|
|
|
|
|
|
|
|
def convert_labels(fname=Path('xView/xView_train.geojson')): |
|
|
|
# Convert xView geoJSON labels to YOLO format |
|
|
|
path = fname.parent |
|
|
|
with open(fname) as f: |
|
|
|
print(f'Loading {fname}...') |
|
|
|
data = json.load(f) |
|
|
|
|
|
|
|
# Make dirs |
|
|
|
labels = Path(path / 'labels' / 'train') |
|
|
|
os.system(f'rm -rf {labels}') |
|
|
|
labels.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
# xView classes 11-94 to 0-59 |
|
|
|
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, |
|
|
|
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, |
|
|
|
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, |
|
|
|
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] |
|
|
|
|
|
|
|
shapes = {} |
|
|
|
for feature in tqdm(data['features'], desc=f'Converting {fname}'): |
|
|
|
p = feature['properties'] |
|
|
|
if p['bounds_imcoords']: |
|
|
|
id = p['image_id'] |
|
|
|
file = path / 'train_images' / id |
|
|
|
if file.exists(): # 1395.tif missing |
|
|
|
try: |
|
|
|
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) |
|
|
|
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' |
|
|
|
cls = p['type_id'] |
|
|
|
cls = xview_class2index[int(cls)] # xView class to 0-60 |
|
|
|
assert 59 >= cls >= 0, f'incorrect class index {cls}' |
|
|
|
|
|
|
|
# Write YOLO label |
|
|
|
if id not in shapes: |
|
|
|
shapes[id] = Image.open(file).size |
|
|
|
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) |
|
|
|
with open((labels / id).with_suffix('.txt'), 'a') as f: |
|
|
|
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt |
|
|
|
except Exception as e: |
|
|
|
print(f'WARNING: skipping one label for {file}: {e}') |
|
|
|
|
|
|
|
|
|
|
|
# Download manually from https://challenge.xviewdataset.org |
|
|
|
dir = Path(yaml['path']) # dataset root dir |
|
|
|
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels |
|
|
|
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images |
|
|
|
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) |
|
|
|
# download(urls, dir=dir, delete=False) |
|
|
|
|
|
|
|
# Convert labels |
|
|
|
convert_labels(dir / 'xView_train.geojson') |
|
|
|
|
|
|
|
# Move images |
|
|
|
images = Path(dir / 'images') |
|
|
|
images.mkdir(parents=True, exist_ok=True) |
|
|
|
Path(dir / 'train_images').rename(dir / 'images' / 'train') |
|
|
|
Path(dir / 'val_images').rename(dir / 'images' / 'val') |
|
|
|
|
|
|
|
# Split |
|
|
|
autosplit(dir / 'images' / 'train') |