@@ -1,9 +1,10 @@ | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ | |||
# Train command: python train.py --data Argoverse_HD.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/Argoverse | |||
# /yolov5 | |||
# YOLOv5 🚀 example usage: python train.py --data Argoverse_HD.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── Argoverse ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
@@ -1,9 +1,10 @@ | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# Global Wheat 2020 dataset http://www.global-wheat.com/ | |||
# Train command: python train.py --data GlobalWheat2020.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/GlobalWheat2020 | |||
# /yolov5 | |||
# YOLOv5 🚀 example usage: python train.py --data GlobalWheat2020.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── GlobalWheat2020 ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
@@ -1,9 +1,10 @@ | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# Objects365 dataset https://www.objects365.org/ | |||
# Train command: python train.py --data Objects365.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/Objects365 | |||
# /yolov5 | |||
# YOLOv5 🚀 example usage: python train.py --data Objects365.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── Objects365 ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
@@ -1,9 +1,10 @@ | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 | |||
# Train command: python train.py --data SKU-110K.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/SKU-110K | |||
# /yolov5 | |||
# YOLOv5 🚀 example usage: python train.py --data SKU-110K.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── SKU-110K ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
@@ -1,9 +1,10 @@ | |||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/ | |||
# Train command: python train.py --data VOC.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/VOC | |||
# /yolov5 | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC | |||
# YOLOv5 🚀 example usage: python train.py --data VOC.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── VOC ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
@@ -1,9 +1,10 @@ | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset | |||
# Train command: python train.py --data VisDrone.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/VisDrone | |||
# /yolov5 | |||
# YOLOv5 🚀 example usage: python train.py --data VisDrone.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── VisDrone ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
@@ -1,9 +1,10 @@ | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# COCO 2017 dataset http://cocodataset.org | |||
# Train command: python train.py --data coco.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/coco | |||
# /yolov5 | |||
# YOLOv5 🚀 example usage: python train.py --data coco.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── coco ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
@@ -1,9 +1,10 @@ | |||
# COCO 2017 dataset http://cocodataset.org - first 128 training images | |||
# Train command: python train.py --data coco128.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/coco128 | |||
# /yolov5 | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) | |||
# YOLOv5 🚀 example usage: python train.py --data coco128.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── coco128 ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
@@ -1,10 +1,11 @@ | |||
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0 | |||
# xView 2018 dataset https://challenge.xviewdataset.org | |||
# ----> NOTE: DOWNLOAD DATA MANUALLY from URL above and unzip to /datasets/xView before running train command below | |||
# Train command: python train.py --data xView.yaml | |||
# Default dataset location is next to YOLOv5: | |||
# /parent | |||
# /datasets/xView | |||
# /yolov5 | |||
# -------- DOWNLOAD DATA MANUALLY from URL above and unzip to 'datasets/xView' before running train command! -------- | |||
# YOLOv5 🚀 example usage: python train.py --data xView.yaml | |||
# parent | |||
# ├── yolov5 | |||
# └── datasets | |||
# └── xView ← downloads here | |||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |