Browse Source

Add support for different normalization layers (#7377)

* Add support for different normalization layers.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
modifyDataloader
Vardan Agarwal GitHub 2 years ago
parent
commit
fa569cdae5
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 2 additions and 1 deletions
  1. +2
    -1
      train.py

+ 2
- 1
train.py View File

@@ -151,10 +151,11 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

g = [], [], [] # optimizer parameter groups
bn = nn.BatchNorm2d, nn.LazyBatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d, nn.LazyInstanceNorm2d, nn.LayerNorm
for v in model.modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
g[2].append(v.bias)
if isinstance(v, nn.BatchNorm2d): # weight (no decay)
if isinstance(v, bn): # weight (no decay)
g[1].append(v.weight)
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
g[0].append(v.weight)

Loading…
Cancel
Save