|
|
@@ -151,10 +151,11 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio |
|
|
|
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") |
|
|
|
|
|
|
|
g = [], [], [] # optimizer parameter groups |
|
|
|
bn = nn.BatchNorm2d, nn.LazyBatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d, nn.LazyInstanceNorm2d, nn.LayerNorm |
|
|
|
for v in model.modules(): |
|
|
|
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias |
|
|
|
g[2].append(v.bias) |
|
|
|
if isinstance(v, nn.BatchNorm2d): # weight (no decay) |
|
|
|
if isinstance(v, bn): # weight (no decay) |
|
|
|
g[1].append(v.weight) |
|
|
|
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) |
|
|
|
g[0].append(v.weight) |