浏览代码

EMA bug fix 2 (#2330)

* EMA bug fix 2

* update
5.0
Glenn Jocher GitHub 3 年前
父节点
当前提交
fab5085674
找不到此签名对应的密钥 GPG 密钥 ID: 4AEE18F83AFDEB23
共有 4 个文件被更改,包括 13 次插入10 次删除
  1. +1
    -1
      hubconf.py
  2. +2
    -1
      models/experimental.py
  3. +5
    -5
      train.py
  4. +5
    -3
      utils/general.py

+ 1
- 1
hubconf.py 查看文件

@@ -120,7 +120,7 @@ def custom(path_or_model='path/to/model.pt', autoshape=True):
"""
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
if isinstance(model, dict):
model = model['model'] # load model
model = model['ema' if model.get('ema') else 'model'] # load model

hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict

+ 2
- 1
models/experimental.py 查看文件

@@ -115,7 +115,8 @@ def attempt_load(weights, map_location=None):
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
attempt_download(w)
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
ckpt = torch.load(w, map_location=map_location) # load
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model

# Compatibility updates
for m in model.modules():

+ 5
- 5
train.py 查看文件

@@ -151,8 +151,8 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):

# EMA
if ema and ckpt.get('ema'):
ema.ema.load_state_dict(ckpt['ema'][0].float().state_dict())
ema.updates = ckpt['ema'][1]
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
ema.updates = ckpt['updates']

# Results
if ckpt.get('training_results') is not None:
@@ -383,9 +383,9 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': results_file.read_text(),
'model': ema.ema if final_epoch else deepcopy(
model.module if is_parallel(model) else model).half(),
'ema': (deepcopy(ema.ema).half(), ema.updates),
'model': deepcopy(model.module if is_parallel(model) else model).half(),
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': optimizer.state_dict(),
'wandb_id': wandb_run.id if wandb else None}


+ 5
- 3
utils/general.py 查看文件

@@ -481,10 +481,12 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non
return output


def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
# Strip optimizer from 'f' to finalize training, optionally save as 's'
x = torch.load(f, map_location=torch.device('cpu'))
for k in 'optimizer', 'training_results', 'wandb_id', 'ema': # keys
if x.get('ema'):
x['model'] = x['ema'] # replace model with ema
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
x[k] = None
x['epoch'] = -1
x['model'].half() # to FP16
@@ -492,7 +494,7 @@ def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *;
p.requires_grad = False
torch.save(x, s or f)
mb = os.path.getsize(s or f) / 1E6 # filesize
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")


def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):

正在加载...
取消
保存