瀏覽代碼

Update utils.py

5.0
Glenn Jocher GitHub 4 年之前
父節點
當前提交
fc7c42723d
沒有發現已知的金鑰在資料庫的簽署中 GPG Key ID: 4AEE18F83AFDEB23
共有 1 個文件被更改,包括 6 次插入10 次删除
  1. +6
    -10
      utils/utils.py

+ 6
- 10
utils/utils.py 查看文件

@@ -47,7 +47,7 @@ def check_git_status():

def check_img_size(img_size, s=32):
# Verify img_size is a multiple of stride s
new_size = make_divisible(img_size, s) # ceil gs-multiple
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
if new_size != img_size:
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
return new_size
@@ -421,9 +421,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
lcls, lbox, lobj = ft([0]), ft([0]), ft([0])
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
h = model.module.hyp if hasattr(model, 'module') else model.hyp # hyperparameters
nc = model.module.nc if hasattr(model, 'module') else model.nc
gr = model.module.gr if hasattr(model, 'module') else model.gr
h = model.hyp # hyperparameters
red = 'mean' # Loss reduction (sum or mean)

# Define criteria
@@ -457,10 +455,10 @@ def compute_loss(p, targets, model): # predictions, targets, model
lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean() # giou loss

# Obj
tobj[b, a, gj, gi] = (1.0 - gr) + gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio

# Class
if nc > 1: # cls loss (only if multiple classes)
if model.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(ps[:, 5:], cn) # targets
t[range(nb), tcls[i]] = cp
lcls += BCEcls(ps[:, 5:], t) # BCE
@@ -479,7 +477,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
g = 3.0 # loss gain
lobj *= g / bs
if nt:
lcls *= g / nt / nc
lcls *= g / nt / model.nc
lbox *= g / nt

loss = lbox + lobj + lcls
@@ -490,8 +488,6 @@ def build_targets(p, targets, model):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
det = model.module.model[-1] if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) \
else model.model[-1] # Detect() module
hyp = model.module.hyp if hasattr(model, 'module') else model.hyp
na, nt = det.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch = [], [], [], []
gain = torch.ones(6, device=targets.device) # normalized to gridspace gain
@@ -507,7 +503,7 @@ def build_targets(p, targets, model):
a, t, offsets = [], targets * gain, 0
if nt:
r = t[None, :, 4:6] / anchors[:, None] # wh ratio
j = torch.max(r, 1. / r).max(2)[0] < hyp['anchor_t'] # compare
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2))
a, t = at[j], t.repeat(na, 1, 1)[j] # filter


Loading…
取消
儲存