Pārlūkot izejas kodu

module updates

5.0
Glenn Jocher pirms 4 gadiem
vecāks
revīzija
ff02ae0869
3 mainītis faili ar 16 papildinājumiem un 43 dzēšanām
  1. +10
    -36
      models/common.py
  2. +1
    -3
      models/yolo.py
  3. +5
    -4
      utils/utils.py

+ 10
- 36
models/common.py Parādīt failu

@@ -6,11 +6,13 @@ import torch.nn.functional as F
from utils.utils import *


def DWConv(c1, c2, k=1, s=1, act=True): # depthwise convolution
def DWConv(c1, c2, k=1, s=1, act=True):
# Depthwise convolution
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class Conv(nn.Module): # standard convolution
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
super(Conv, self).__init__()
self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False)
@@ -25,6 +27,7 @@ class Conv(nn.Module): # standard convolution


class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(Bottleneck, self).__init__()
c_ = int(c2 * e) # hidden channels
@@ -36,21 +39,8 @@ class Bottleneck(nn.Module):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckLight(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(BottleneckLight, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c_, c2, 3, 1, 3 // 2, groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.add = shortcut and c1 == c2

def forward(self, x):
return self.act(self.bn(x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))))


class BottleneckCSP(nn.Module):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(BottleneckCSP, self).__init__()
c_ = int(c2 * e) # hidden channels
@@ -68,25 +58,8 @@ class BottleneckCSP(nn.Module):
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class Narrow(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1): # ch_in, ch_out, shortcut, groups
super(Narrow, self).__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2

def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class Origami(nn.Module): # 5-side layering
def forward(self, x):
y = F.pad(x, [1, 1, 1, 1])
return torch.cat([x, y[..., :-2, 1:-1], y[..., 1:-1, :-2], y[..., 2:, 1:-1], y[..., 1:-1, 2:]], 1)


class ConvPlus(nn.Module): # standard convolution
class ConvPlus(nn.Module):
# Plus-shaped convolution
def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
super(ConvPlus, self).__init__()
self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
@@ -96,7 +69,8 @@ class ConvPlus(nn.Module): # standard convolution
return self.cv1(x) + self.cv2(x)


class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP
class SPP(nn.Module):
# Spatial pyramid pooling layer used in YOLOv3-SPP
def __init__(self, c1, c2, k=(5, 9, 13)):
super(SPP, self).__init__()
c_ = c1 // 2 # hidden channels

+ 1
- 3
models/yolo.py Parādīt failu

@@ -176,9 +176,7 @@ def parse_model(md, ch): # model_dict, input_channels(3)
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum([ch[x] for x in f])
elif m is Origami:
c2 = ch[f] * 5
c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
elif m is Detect:
f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no]))
else:

+ 5
- 4
utils/utils.py Parādīt failu

@@ -468,6 +468,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, c
nx6 (x1, y1, x2, y2, conf, cls)
"""
nc = prediction[0].shape[1] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates

# Settings
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
@@ -487,7 +488,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, c
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[x[:, 4] > conf_thres] # confidence
x = x[xc[xi]] # confidence

# If none remain process next image
if not x.shape[0]:
@@ -1074,9 +1075,9 @@ def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_re
for i in range(5):
for j in [i, i + 5]:
y = results[j, x]
# ax[i].plot(x, y, marker='.', label=s[j])
y_smooth = butter_lowpass_filtfilt(y)
ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
ax[i].plot(x, y, marker='.', label=s[j])
# y_smooth = butter_lowpass_filtfilt(y)
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])

ax[i].set_title(t[i])
ax[i].legend()

Notiek ielāde…
Atcelt
Saglabāt