* Apple Metal Performance Shader (MPS) device support
Following https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/
Should work with Apple M1 devices with PyTorch nightly installed with command `--device mps`. Usage examples:
```bash
python train.py --device mps
python detect.py --device mps
python val.py --device mps
```
* Update device strategy to fix MPS issue
* Add DWConvTranspose2d() module
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add DWConvTranspose2d() module
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fix
* Fix
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* New TensorFlow `TFCrossConv()` module
* Move from experimental to common
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add C3x
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add to C3x to yolo.py
* Add to C3x to tf.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* TFC3x bug fix
* TFC3x bug fix
* TFC3x bug fix
* Add TFDWConv g==c1==c2 check
* Add comment
* Update tf.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* New TensorFlow `TFDWConv()` module
Analog to DWConv() module:
8aa2085a7e/models/common.py (L53-L57)
* Fix and new activations() function
* Update tf.py
* [pre-commit.ci] pre-commit suggestions
updates:
- [github.com/asottile/pyupgrade: v2.31.0 → v2.31.1](https://github.com/asottile/pyupgrade/compare/v2.31.0...v2.31.1)
- [github.com/pre-commit/mirrors-yapf: v0.31.0 → v0.32.0](https://github.com/pre-commit/mirrors-yapf/compare/v0.31.0...v0.32.0)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update yolo.py
* Update activations.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update activations.py
* Update tf.py
* Update tf.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
* precommit: yapf
* align isort
* fix
# Conflicts:
# utils/plots.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update setup.cfg
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update setup.cfg
* Update setup.cfg
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update wandb_utils.py
* Update augmentations.py
* Update setup.cfg
* Update yolo.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update val.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* simplify colorstr
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* val run fix
* export.py last comma
* Update export.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update hubconf.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* PyTorch Hub tuple fix
* PyTorch Hub tuple fix2
* PyTorch Hub tuple fix3
* Update setup
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
* removed transpose op for better edgetpu support
* fix for training case
* enabled experimental new quantizer flag
* precalculate add and mul ops at compile time
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
* prune unused imports
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* precommit: isort
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update isort config
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update name
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
* Add models/tf.py for TensorFlow and TFLite export
* Set auto=False for int8 calibration
* Update requirements.txt for TensorFlow and TFLite export
* Read anchors directly from PyTorch weights
* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export
* Remove check_anchor_order, check_file, set_logging from import
* Reformat code and optimize imports
* Autodownload model and check cfg
* update --source path, img-size to 320, single output
* Adjust representative_dataset
* Put representative dataset in tfl_int8 block
* detect.py TF inference
* weights to string
* weights to string
* cleanup tf.py
* Add --dynamic-batch-size
* Add xywh normalization to reduce calibration error
* Update requirements.txt
TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error
* Fix imports
Move C3 from models.experimental to models.common
* Add models/tf.py for TensorFlow and TFLite export
* Set auto=False for int8 calibration
* Update requirements.txt for TensorFlow and TFLite export
* Read anchors directly from PyTorch weights
* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export
* Remove check_anchor_order, check_file, set_logging from import
* Reformat code and optimize imports
* Autodownload model and check cfg
* update --source path, img-size to 320, single output
* Adjust representative_dataset
* detect.py TF inference
* Put representative dataset in tfl_int8 block
* weights to string
* weights to string
* cleanup tf.py
* Add --dynamic-batch-size
* Add xywh normalization to reduce calibration error
* Update requirements.txt
TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error
* Fix imports
Move C3 from models.experimental to models.common
* implement C3() and SiLU()
* Fix reshape dim to support dynamic batching
* Add epsilon argument in tf_BN, which is different between TF and PT
* Set stride to None if not using PyTorch, and do not warmup without PyTorch
* Add list support in check_img_size()
* Add list input support in detect.py
* sys.path.append('./') to run from yolov5/
* Add int8 quantization support for TensorFlow 2.5
* Add get_coco128.sh
* Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU)
* Update requirements.txt
* Replace torch.load() with attempt_load()
* Update requirements.txt
* Add --tf-raw-resize to set half_pixel_centers=False
* Add --agnostic-nms for TF class-agnostic NMS
* Cleanup after merge
* Cleanup2 after merge
* Cleanup3 after merge
* Add tf.py docstring with credit and usage
* pb saved_model and tflite use only one model in detect.py
* Add use cases in docstring of tf.py
* Remove redundant `stride` definition
* Remove keras direct import
* Fix `check_requirements(('tensorflow>=2.4.1',))`
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>