# Parameters nc: 80 # number of classes depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple anchors: - [ 10,13, 16,30, 33,23 ] # P3/8 - [ 30,61, 62,45, 59,119 ] # P4/16 - [ 116,90, 156,198, 373,326 ] # P5/32 # YOLOv5 backbone backbone: # [from, number, module, args] [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 [ -1, 3, Bottleneck, [ 128 ] ], [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 [ -1, 9, BottleneckCSP, [ 256 ] ], [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 [ -1, 9, BottleneckCSP, [ 512 ] ], [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], [ -1, 6, BottleneckCSP, [ 1024 ] ], # 9 ] # YOLOv5 BiFPN head head: [ [ -1, 3, BottleneckCSP, [ 1024, False ] ], # 10 (P5/32-large) [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 20, 6 ], 1, Concat, [ 1 ] ], # cat P4 [ -1, 1, Conv, [ 512, 1, 1 ] ], [ -1, 3, BottleneckCSP, [ 512, False ] ], # 14 (P4/16-medium) [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 [ -1, 1, Conv, [ 256, 1, 1 ] ], [ -1, 3, BottleneckCSP, [ 256, False ] ], # 18 (P3/8-small) [ [ 18, 14, 10 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) ]