# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit Format | `export.py --include` | Model --- | --- | --- PyTorch | - | yolov5s.pt TorchScript | `torchscript` | yolov5s.torchscript ONNX | `onnx` | yolov5s.onnx OpenVINO | `openvino` | yolov5s_openvino_model/ TensorRT | `engine` | yolov5s.engine CoreML | `coreml` | yolov5s.mlmodel TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ TensorFlow GraphDef | `pb` | yolov5s.pb TensorFlow Lite | `tflite` | yolov5s.tflite TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite TensorFlow.js | `tfjs` | yolov5s_web_model/ Requirements: $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU Usage: $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... Inference: $ python path/to/detect.py --weights yolov5s.pt # PyTorch yolov5s.torchscript # TorchScript yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s.xml # OpenVINO yolov5s.engine # TensorRT yolov5s.mlmodel # CoreML (macOS-only) yolov5s_saved_model # TensorFlow SavedModel yolov5s.pb # TensorFlow GraphDef yolov5s.tflite # TensorFlow Lite yolov5s_edgetpu.tflite # TensorFlow Edge TPU TensorFlow.js: $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example $ npm install $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model $ npm start """ import argparse import json import os import platform import subprocess import sys import time import warnings from pathlib import Path import pandas as pd import torch import yaml from torch.utils.mobile_optimizer import optimize_for_mobile FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH if platform.system() != 'Windows': ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.experimental import attempt_load from models.yolo import Detect from utils.dataloaders import LoadImages from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, colorstr, file_size, print_args, url2file) from utils.torch_utils import select_device def export_formats(): # YOLOv5 export formats x = [ ['PyTorch', '-', '.pt', True], ['TorchScript', 'torchscript', '.torchscript', True], ['ONNX', 'onnx', '.onnx', True], ['OpenVINO', 'openvino', '_openvino_model', False], ['TensorRT', 'engine', '.engine', True], ['CoreML', 'coreml', '.mlmodel', False], ['TensorFlow SavedModel', 'saved_model', '_saved_model', True], ['TensorFlow GraphDef', 'pb', '.pb', True], ['TensorFlow Lite', 'tflite', '.tflite', False], ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False], ['TensorFlow.js', 'tfjs', '_web_model', False],] return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'GPU']) def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): # YOLOv5 TorchScript model export try: LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') f = file.with_suffix('.torchscript') ts = torch.jit.trace(model, im, strict=False) d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names} extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) else: ts.save(str(f), _extra_files=extra_files) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'{prefix} export failure: {e}') def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')): # YOLOv5 ONNX export try: check_requirements(('onnx',)) import onnx LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') f = file.with_suffix('.onnx') torch.onnx.export( model.cpu() if dynamic else model, # --dynamic only compatible with cpu im.cpu() if dynamic else im, f, verbose=False, opset_version=opset, training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, do_constant_folding=not train, input_names=['images'], output_names=['output'], dynamic_axes={ 'images': { 0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) 'output': { 0: 'batch', 1: 'anchors'} # shape(1,25200,85) } if dynamic else None) # Checks model_onnx = onnx.load(f) # load onnx model onnx.checker.check_model(model_onnx) # check onnx model # Metadata d = {'stride': int(max(model.stride)), 'names': model.names} for k, v in d.items(): meta = model_onnx.metadata_props.add() meta.key, meta.value = k, str(v) onnx.save(model_onnx, f) # Simplify if simplify: try: check_requirements(('onnx-simplifier',)) import onnxsim LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') model_onnx, check = onnxsim.simplify(model_onnx, dynamic_input_shape=dynamic, input_shapes={'images': list(im.shape)} if dynamic else None) assert check, 'assert check failed' onnx.save(model_onnx, f) except Exception as e: LOGGER.info(f'{prefix} simplifier failure: {e}') LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'{prefix} export failure: {e}') def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')): # YOLOv5 OpenVINO export try: check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ import openvino.inference_engine as ie LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') f = str(file).replace('.pt', f'_openvino_model{os.sep}') cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}" subprocess.check_output(cmd.split()) # export with open(Path(f) / file.with_suffix('.yaml').name, 'w') as g: yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g) # add metadata.yaml LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')): # YOLOv5 CoreML export try: check_requirements(('coremltools',)) import coremltools as ct LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') f = file.with_suffix('.mlmodel') ts = torch.jit.trace(model, im, strict=False) # TorchScript model ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) if bits < 32: if platform.system() == 'Darwin': # quantization only supported on macOS with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) else: print(f'{prefix} quantization only supported on macOS, skipping...') ct_model.save(f) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return ct_model, f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') return None, None def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt try: assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' try: import tensorrt as trt except Exception: if platform.system() == 'Linux': check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',)) import tensorrt as trt if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 grid = model.model[-1].anchor_grid model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] export_onnx(model, im, file, 12, train, False, simplify) # opset 12 model.model[-1].anchor_grid = grid else: # TensorRT >= 8 check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 export_onnx(model, im, file, 13, train, False, simplify) # opset 13 onnx = file.with_suffix('.onnx') LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') assert onnx.exists(), f'failed to export ONNX file: {onnx}' f = file.with_suffix('.engine') # TensorRT engine file logger = trt.Logger(trt.Logger.INFO) if verbose: logger.min_severity = trt.Logger.Severity.VERBOSE builder = trt.Builder(logger) config = builder.create_builder_config() config.max_workspace_size = workspace * 1 << 30 # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) network = builder.create_network(flag) parser = trt.OnnxParser(network, logger) if not parser.parse_from_file(str(onnx)): raise RuntimeError(f'failed to load ONNX file: {onnx}') inputs = [network.get_input(i) for i in range(network.num_inputs)] outputs = [network.get_output(i) for i in range(network.num_outputs)] LOGGER.info(f'{prefix} Network Description:') for inp in inputs: LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}') for out in outputs: LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}') LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine in {f}') if builder.platform_has_fast_fp16 and half: config.set_flag(trt.BuilderFlag.FP16) with builder.build_engine(network, config) as engine, open(f, 'wb') as t: t.write(engine.serialize()) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_saved_model(model, im, file, dynamic, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, keras=False, prefix=colorstr('TensorFlow SavedModel:')): # YOLOv5 TensorFlow SavedModel export try: import tensorflow as tf from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 from models.tf import TFDetect, TFModel LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') f = str(file).replace('.pt', '_saved_model') batch_size, ch, *imgsz = list(im.shape) # BCHW tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) keras_model.trainable = False keras_model.summary() if keras: keras_model.save(f, save_format='tf') else: spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) m = tf.function(lambda x: keras_model(x)) # full model m = m.get_concrete_function(spec) frozen_func = convert_variables_to_constants_v2(m) tfm = tf.Module() tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x)[0], [spec]) tfm.__call__(im) tf.saved_model.save(tfm, f, options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions()) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return keras_model, f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') return None, None def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow try: import tensorflow as tf from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') f = file.with_suffix('.pb') m = tf.function(lambda x: keras_model(x)) # full model m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) frozen_func = convert_variables_to_constants_v2(m) frozen_func.graph.as_graph_def() tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): # YOLOv5 TensorFlow Lite export try: import tensorflow as tf LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') batch_size, ch, *imgsz = list(im.shape) # BCHW f = str(file).replace('.pt', '-fp16.tflite') converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] converter.target_spec.supported_types = [tf.float16] converter.optimizations = [tf.lite.Optimize.DEFAULT] if int8: from models.tf import representative_dataset_gen dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.target_spec.supported_types = [] converter.inference_input_type = tf.uint8 # or tf.int8 converter.inference_output_type = tf.uint8 # or tf.int8 converter.experimental_new_quantizer = True f = str(file).replace('.pt', '-int8.tflite') if nms or agnostic_nms: converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) tflite_model = converter.convert() open(f, "wb").write(tflite_model) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_edgetpu(file, prefix=colorstr('Edge TPU:')): # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ try: cmd = 'edgetpu_compiler --version' help_url = 'https://coral.ai/docs/edgetpu/compiler/' assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0: LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system for c in ( 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model cmd = f"edgetpu_compiler -s -o {file.parent} {f_tfl}" subprocess.run(cmd.split(), check=True) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_tfjs(file, prefix=colorstr('TensorFlow.js:')): # YOLOv5 TensorFlow.js export try: check_requirements(('tensorflowjs',)) import re import tensorflowjs as tfjs LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') f = str(file).replace('.pt', '_web_model') # js dir f_pb = file.with_suffix('.pb') # *.pb path f_json = f'{f}/model.json' # *.json path cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \ f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}' subprocess.run(cmd.split()) with open(f_json) as j: json = j.read() with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order subst = re.sub( r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' r'"Identity_1": {"name": "Identity_1"}, ' r'"Identity_2": {"name": "Identity_2"}, ' r'"Identity_3": {"name": "Identity_3"}}}', json) j.write(subst) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') @torch.no_grad() def run( data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' weights=ROOT / 'yolov5s.pt', # weights path imgsz=(640, 640), # image (height, width) batch_size=1, # batch size device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu include=('torchscript', 'onnx'), # include formats half=False, # FP16 half-precision export inplace=False, # set YOLOv5 Detect() inplace=True train=False, # model.train() mode keras=False, # use Keras optimize=False, # TorchScript: optimize for mobile int8=False, # CoreML/TF INT8 quantization dynamic=False, # ONNX/TF: dynamic axes simplify=False, # ONNX: simplify model opset=12, # ONNX: opset version verbose=False, # TensorRT: verbose log workspace=4, # TensorRT: workspace size (GB) nms=False, # TF: add NMS to model agnostic_nms=False, # TF: add agnostic NMS to model topk_per_class=100, # TF.js NMS: topk per class to keep topk_all=100, # TF.js NMS: topk for all classes to keep iou_thres=0.45, # TF.js NMS: IoU threshold conf_thres=0.25, # TF.js NMS: confidence threshold ): t = time.time() include = [x.lower() for x in include] # to lowercase fmts = tuple(export_formats()['Argument'][1:]) # --include arguments flags = [x in include for x in fmts] assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}' jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights # Load PyTorch model device = select_device(device) if half: assert device.type != 'cpu' or coreml or xml, '--half only compatible with GPU export, i.e. use --device 0' assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model nc, names = model.nc, model.names # number of classes, class names # Checks imgsz *= 2 if len(imgsz) == 1 else 1 # expand assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}' # Input gs = int(max(model.stride)) # grid size (max stride) imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection # Update model model.train() if train else model.eval() # training mode = no Detect() layer grid construction for k, m in model.named_modules(): if isinstance(m, Detect): m.inplace = inplace m.onnx_dynamic = dynamic m.export = True for _ in range(2): y = model(im) # dry runs if half and not coreml: im, model = im.half(), model.half() # to FP16 shape = tuple(y[0].shape) # model output shape LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") # Exports f = [''] * 10 # exported filenames warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning if jit: f[0] = export_torchscript(model, im, file, optimize) if engine: # TensorRT required before ONNX f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose) if onnx or xml: # OpenVINO requires ONNX f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify) if xml: # OpenVINO f[3] = export_openvino(model, file, half) if coreml: _, f[4] = export_coreml(model, im, file, int8, half) # TensorFlow Exports if any((saved_model, pb, tflite, edgetpu, tfjs)): if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707 check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow` assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' model, f[5] = export_saved_model(model.cpu(), im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs, agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all, iou_thres=iou_thres, conf_thres=conf_thres, keras=keras) if pb or tfjs: # pb prerequisite to tfjs f[6] = export_pb(model, file) if tflite or edgetpu: f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms) if edgetpu: f[8] = export_edgetpu(file) if tfjs: f[9] = export_tfjs(file) # Finish f = [str(x) for x in f if x] # filter out '' and None if any(f): LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)' f"\nResults saved to {colorstr('bold', file.parent.resolve())}" f"\nDetect: python detect.py --weights {f[-1]}" f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')" f"\nValidate: python val.py --weights {f[-1]}" f"\nVisualize: https://netron.app") return f # return list of exported files/dirs def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--half', action='store_true', help='FP16 half-precision export') parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') parser.add_argument('--train', action='store_true', help='model.train() mode') parser.add_argument('--keras', action='store_true', help='TF: use Keras') parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes') parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version') parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx'], help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs') opt = parser.parse_args() print_args(vars(opt)) return opt def main(opt): for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)