# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit Format | `export.py --include` | Model --- | --- | --- PyTorch | - | yolov5s.pt TorchScript | `torchscript` | yolov5s.torchscript ONNX | `onnx` | yolov5s.onnx OpenVINO | `openvino` | yolov5s_openvino_model/ TensorRT | `engine` | yolov5s.engine CoreML | `coreml` | yolov5s.mlmodel TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ TensorFlow GraphDef | `pb` | yolov5s.pb TensorFlow Lite | `tflite` | yolov5s.tflite TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite TensorFlow.js | `tfjs` | yolov5s_web_model/ Usage: $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml openvino saved_model tflite tfjs Inference: $ python path/to/detect.py --weights yolov5s.pt # PyTorch yolov5s.torchscript # TorchScript yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s.xml # OpenVINO yolov5s.engine # TensorRT yolov5s.mlmodel # CoreML (under development) yolov5s_saved_model # TensorFlow SavedModel yolov5s.pb # TensorFlow GraphDef yolov5s.tflite # TensorFlow Lite yolov5s_edgetpu.tflite # TensorFlow Edge TPU TensorFlow.js: $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example $ npm install $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model $ npm start """ import argparse import json import os import subprocess import sys import time from pathlib import Path import torch import torch.nn as nn from torch.utils.mobile_optimizer import optimize_for_mobile FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import Conv from models.experimental import attempt_load from models.yolo import Detect from utils.activations import SiLU from utils.datasets import LoadImages from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, colorstr, file_size, print_args, url2file) from utils.torch_utils import select_device def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): # YOLOv5 TorchScript model export try: LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') f = file.with_suffix('.torchscript') ts = torch.jit.trace(model, im, strict=False) d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names} extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() (optimize_for_mobile(ts) if optimize else ts).save(str(f), _extra_files=extra_files) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'{prefix} export failure: {e}') def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')): # YOLOv5 ONNX export try: check_requirements(('onnx',)) import onnx LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') f = file.with_suffix('.onnx') torch.onnx.export(model, im, f, verbose=False, opset_version=opset, training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, do_constant_folding=not train, input_names=['images'], output_names=['output'], dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85) } if dynamic else None) # Checks model_onnx = onnx.load(f) # load onnx model onnx.checker.check_model(model_onnx) # check onnx model # LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print # Simplify if simplify: try: check_requirements(('onnx-simplifier',)) import onnxsim LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') model_onnx, check = onnxsim.simplify( model_onnx, dynamic_input_shape=dynamic, input_shapes={'images': list(im.shape)} if dynamic else None) assert check, 'assert check failed' onnx.save(model_onnx, f) except Exception as e: LOGGER.info(f'{prefix} simplifier failure: {e}') LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') LOGGER.info(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'") except Exception as e: LOGGER.info(f'{prefix} export failure: {e}') def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')): # YOLOv5 OpenVINO export try: check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ import openvino.inference_engine as ie LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') f = str(file).replace('.pt', '_openvino_model' + os.sep) cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}" subprocess.check_output(cmd, shell=True) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_coreml(model, im, file, prefix=colorstr('CoreML:')): # YOLOv5 CoreML export ct_model = None try: check_requirements(('coremltools',)) import coremltools as ct LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') f = file.with_suffix('.mlmodel') model.train() # CoreML exports should be placed in model.train() mode ts = torch.jit.trace(model, im, strict=False) # TorchScript model ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) ct_model.save(f) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') return ct_model def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt try: check_requirements(('tensorrt',)) import tensorrt as trt opset = (12, 13)[trt.__version__[0] == '8'] # test on TensorRT 7.x and 8.x export_onnx(model, im, file, opset, train, False, simplify) onnx = file.with_suffix('.onnx') assert onnx.exists(), f'failed to export ONNX file: {onnx}' LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') f = file.with_suffix('.engine') # TensorRT engine file logger = trt.Logger(trt.Logger.INFO) if verbose: logger.min_severity = trt.Logger.Severity.VERBOSE builder = trt.Builder(logger) config = builder.create_builder_config() config.max_workspace_size = workspace * 1 << 30 flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) network = builder.create_network(flag) parser = trt.OnnxParser(network, logger) if not parser.parse_from_file(str(onnx)): raise RuntimeError(f'failed to load ONNX file: {onnx}') inputs = [network.get_input(i) for i in range(network.num_inputs)] outputs = [network.get_output(i) for i in range(network.num_outputs)] LOGGER.info(f'{prefix} Network Description:') for inp in inputs: LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}') for out in outputs: LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}') half &= builder.platform_has_fast_fp16 LOGGER.info(f'{prefix} building FP{16 if half else 32} engine in {f}') if half: config.set_flag(trt.BuilderFlag.FP16) with builder.build_engine(network, config) as engine, open(f, 'wb') as t: t.write(engine.serialize()) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_saved_model(model, im, file, dynamic, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, prefix=colorstr('TensorFlow SavedModel:')): # YOLOv5 TensorFlow SavedModel export keras_model = None try: import tensorflow as tf from tensorflow import keras from models.tf import TFDetect, TFModel LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') f = str(file).replace('.pt', '_saved_model') batch_size, ch, *imgsz = list(im.shape) # BCHW tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) keras_model = keras.Model(inputs=inputs, outputs=outputs) keras_model.trainable = False keras_model.summary() keras_model.save(f, save_format='tf') LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') return keras_model def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')): # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow try: import tensorflow as tf from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') f = file.with_suffix('.pb') m = tf.function(lambda x: keras_model(x)) # full model m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) frozen_func = convert_variables_to_constants_v2(m) frozen_func.graph.as_graph_def() tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')): # YOLOv5 TensorFlow Lite export try: import tensorflow as tf from models.tf import representative_dataset_gen LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') batch_size, ch, *imgsz = list(im.shape) # BCHW f = str(file).replace('.pt', '-fp16.tflite') converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] converter.target_spec.supported_types = [tf.float16] converter.optimizations = [tf.lite.Optimize.DEFAULT] if int8: dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.target_spec.supported_types = [] converter.inference_input_type = tf.uint8 # or tf.int8 converter.inference_output_type = tf.uint8 # or tf.int8 converter.experimental_new_quantizer = False f = str(file).replace('.pt', '-int8.tflite') tflite_model = converter.convert() open(f, "wb").write(tflite_model) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')): # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ try: cmd = 'edgetpu_compiler --version' out = subprocess.run(cmd, shell=True, capture_output=True, check=True) ver = out.stdout.decode().split()[-1] LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') f = str(file).replace('.pt', '-int8_edgetpu.tflite') f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model cmd = f"edgetpu_compiler -s {f_tfl}" subprocess.run(cmd, shell=True, check=True) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): # YOLOv5 TensorFlow.js export try: check_requirements(('tensorflowjs',)) import re import tensorflowjs as tfjs LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') f = str(file).replace('.pt', '_web_model') # js dir f_pb = file.with_suffix('.pb') # *.pb path f_json = f + '/model.json' # *.json path cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \ f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}" subprocess.run(cmd, shell=True) json = open(f_json).read() with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order subst = re.sub( r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' r'"Identity_1": {"name": "Identity_1"}, ' r'"Identity_2": {"name": "Identity_2"}, ' r'"Identity_3": {"name": "Identity_3"}}}', json) j.write(subst) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') @torch.no_grad() def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' weights=ROOT / 'yolov5s.pt', # weights path imgsz=(640, 640), # image (height, width) batch_size=1, # batch size device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu include=('torchscript', 'onnx'), # include formats half=False, # FP16 half-precision export inplace=False, # set YOLOv5 Detect() inplace=True train=False, # model.train() mode optimize=False, # TorchScript: optimize for mobile int8=False, # CoreML/TF INT8 quantization dynamic=False, # ONNX/TF: dynamic axes simplify=False, # ONNX: simplify model opset=12, # ONNX: opset version verbose=False, # TensorRT: verbose log workspace=4, # TensorRT: workspace size (GB) nms=False, # TF: add NMS to model agnostic_nms=False, # TF: add agnostic NMS to model topk_per_class=100, # TF.js NMS: topk per class to keep topk_all=100, # TF.js NMS: topk for all classes to keep iou_thres=0.45, # TF.js NMS: IoU threshold conf_thres=0.25 # TF.js NMS: confidence threshold ): t = time.time() include = [x.lower() for x in include] tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # Checks imgsz *= 2 if len(imgsz) == 1 else 1 # expand opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12 # Load PyTorch model device = select_device(device) assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0' model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model nc, names = model.nc, model.names # number of classes, class names # Input gs = int(max(model.stride)) # grid size (max stride) imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection # Update model if half: im, model = im.half(), model.half() # to FP16 model.train() if train else model.eval() # training mode = no Detect() layer grid construction for k, m in model.named_modules(): if isinstance(m, Conv): # assign export-friendly activations if isinstance(m.act, nn.SiLU): m.act = SiLU() elif isinstance(m, Detect): m.inplace = inplace m.onnx_dynamic = dynamic # m.forward = m.forward_export # assign forward (optional) for _ in range(2): y = model(im) # dry runs LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)") # Exports if 'torchscript' in include: export_torchscript(model, im, file, optimize) if ('onnx' in include) or ('openvino' in include): # OpenVINO requires ONNX export_onnx(model, im, file, opset, train, dynamic, simplify) if 'openvino' in include: export_openvino(model, im, file) if 'engine' in include: export_engine(model, im, file, train, half, simplify, workspace, verbose) if 'coreml' in include: export_coreml(model, im, file) # TensorFlow Exports if any(tf_exports): pb, tflite, edgetpu, tfjs = tf_exports[1:] assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.' model = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs, agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres) # keras model if pb or tfjs: # pb prerequisite to tfjs export_pb(model, im, file) if tflite or edgetpu: export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100) if edgetpu: export_edgetpu(model, im, file) if tfjs: export_tfjs(model, im, file) # Finish LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)' f"\nResults saved to {colorstr('bold', file.parent.resolve())}" f'\nVisualize with https://netron.app') def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--half', action='store_true', help='FP16 half-precision export') parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') parser.add_argument('--train', action='store_true', help='model.train() mode') parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes') parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version') parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx'], help='available formats are (torchscript, onnx, engine, coreml, saved_model, pb, tflite, tfjs)') opt = parser.parse_args() print_args(FILE.stem, opt) return opt def main(opt): for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)