# This file contains modules common to various models import torch.nn.functional as F from utils.utils import * def DWConv(c1, c2, k=1, s=1, act=True): # depthwise convolution return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) class Conv(nn.Module): # standard convolution def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) class Bottleneck(nn.Module): def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(Bottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class BottleneckLight(nn.Module): def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(BottleneckLight, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = nn.Conv2d(c_, c2, 3, 1, 3 // 2, groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.LeakyReLU(0.1, inplace=True) self.add = shortcut and c1 == c2 def forward(self, x): return self.act(self.bn(x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)))) class BottleneckCSP(nn.Module): def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(BottleneckCSP, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) self.cv4 = Conv(c2, c2, 1, 1) self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) self.act = nn.LeakyReLU(0.1, inplace=True) self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) def forward(self, x): y1 = self.cv3(self.m(self.cv1(x))) y2 = self.cv2(x) return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) class Narrow(nn.Module): def __init__(self, c1, c2, shortcut=True, g=1): # ch_in, ch_out, shortcut, groups super(Narrow, self).__init__() c_ = c2 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class Origami(nn.Module): # 5-side layering def forward(self, x): y = F.pad(x, [1, 1, 1, 1]) return torch.cat([x, y[..., :-2, 1:-1], y[..., 1:-1, :-2], y[..., 2:, 1:-1], y[..., 1:-1, 2:]], 1) class ConvPlus(nn.Module): # standard convolution def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups super(ConvPlus, self).__init__() self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias) self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias=bias) def forward(self, x): return self.cv1(x) + self.cv2(x) class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13)): super(SPP, self).__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): x = self.cv1(x) return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class Flatten(nn.Module): # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions def forward(self, x): return x.view(x.size(0), -1) class Focus(nn.Module): # Focus wh information into c-space def __init__(self, c1, c2, k=1): super(Focus, self).__init__() self.conv = Conv(c1 * 4, c2, k, 1) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super(Concat, self).__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) class MixConv2d(nn.Module): # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): super(MixConv2d, self).__init__() groups = len(k) if equal_ch: # equal c_ per group i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices c_ = [(i == g).sum() for g in range(groups)] # intermediate channels else: # equal weight.numel() per group b = [c2] + [0] * groups a = np.eye(groups + 1, groups, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) self.bn = nn.BatchNorm2d(c2) self.act = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))