# Exports a pytorch *.pt model to *.onnx format. Example usage: # $ export PYTHONPATH="$PWD" # $ python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 import argparse import onnx from models.common import * if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', default='./weights/yolov5s.pt', help='model path RELATIVE to ./models/') parser.add_argument('--img-size', default=640, help='inference size (pixels)') parser.add_argument('--batch-size', default=1, help='batch size') opt = parser.parse_args() # Parameters f = opt.weights.replace('.pt', '.onnx') # onnx filename img = torch.zeros((opt.batch_size, 3, opt.img_size, opt.img_size)) # image size, (1, 3, 320, 192) iDetection # Load pytorch model google_utils.attempt_download(opt.weights) model = torch.load(opt.weights)['model'] model.eval() # model.fuse() # optionally fuse Conv2d + BatchNorm2d layers TODO # Export to onnx model.model[-1].export = True # set Detect() layer export=True torch.onnx.export(model, img, f, verbose=False, opset_version=11) # Check onnx model model = onnx.load(f) # load onnx model onnx.checker.check_model(model) # check onnx model print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)