# YOLOv5 common modules import math from pathlib import Path import numpy as np import requests import torch import torch.nn as nn from PIL import Image from torch.cuda import amp from utils.datasets import letterbox from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh from utils.plots import color_list, plot_one_box from utils.torch_utils import time_synchronized def autopad(k, p=None): # kernel, padding # Pad to 'same' if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p def DWConv(c1, c2, k=1, s=1, act=True): # Depthwise convolution return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x)) class Bottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(Bottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class BottleneckCSP(nn.Module): # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(BottleneckCSP, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) self.cv4 = Conv(2 * c_, c2, 1, 1) self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) self.act = nn.LeakyReLU(0.1, inplace=True) self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) def forward(self, x): y1 = self.cv3(self.m(self.cv1(x))) y2 = self.cv2(x) return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) class C3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(C3, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13)): super(SPP, self).__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): x = self.cv1(x) return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class Focus(nn.Module): # Focus wh information into c-space def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(Focus, self).__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act) # self.contract = Contract(gain=2) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) # return self.conv(self.contract(x)) class Contract(nn.Module): # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) def __init__(self, gain=2): super().__init__() self.gain = gain def forward(self, x): N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain' s = self.gain x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2) x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40) class Expand(nn.Module): # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) def __init__(self, gain=2): super().__init__() self.gain = gain def forward(self, x): N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' s = self.gain x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80) x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super(Concat, self).__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) class NMS(nn.Module): # Non-Maximum Suppression (NMS) module conf = 0.25 # confidence threshold iou = 0.45 # IoU threshold classes = None # (optional list) filter by class def __init__(self): super(NMS, self).__init__() def forward(self, x): return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) class autoShape(nn.Module): # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS conf = 0.25 # NMS confidence threshold iou = 0.45 # NMS IoU threshold classes = None # (optional list) filter by class def __init__(self, model): super(autoShape, self).__init__() self.model = model.eval() def autoshape(self): print('autoShape already enabled, skipping... ') # model already converted to model.autoshape() return self def forward(self, imgs, size=640, augment=False, profile=False): # Inference from various sources. For height=720, width=1280, RGB images example inputs are: # filename: imgs = 'data/samples/zidane.jpg' # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg' # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3) # PIL: = Image.open('image.jpg') # HWC x(720,1280,3) # numpy: = np.zeros((720,1280,3)) # HWC # torch: = torch.zeros(16,3,720,1280) # BCHW # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images t = [time_synchronized()] p = next(self.model.parameters()) # for device and type if isinstance(imgs, torch.Tensor): # torch return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference # Pre-process n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images shape0, shape1, files = [], [], [] # image and inference shapes, filenames for i, im in enumerate(imgs): if isinstance(im, str): # filename or uri im, f = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im), im # open im.filename = f # for uri files.append(Path(im.filename).with_suffix('.jpg').name if isinstance(im, Image.Image) else f'image{i}.jpg') im = np.array(im) # to numpy if im.shape[0] < 5: # image in CHW im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input s = im.shape[:2] # HWC shape0.append(s) # image shape g = (size / max(s)) # gain shape1.append([y * g for y in s]) imgs[i] = im # update shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad x = np.stack(x, 0) if n > 1 else x[0][None] # stack x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 t.append(time_synchronized()) with torch.no_grad(), amp.autocast(enabled=p.device.type != 'cpu'): # Inference y = self.model(x, augment, profile)[0] # forward t.append(time_synchronized()) # Post-process y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS for i in range(n): scale_coords(shape1, y[i][:, :4], shape0[i]) t.append(time_synchronized()) return Detections(imgs, y, files, t, self.names, x.shape) class Detections: # detections class for YOLOv5 inference results def __init__(self, imgs, pred, files, times=None, names=None, shape=None): super(Detections, self).__init__() d = pred[0].device # device gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations self.imgs = imgs # list of images as numpy arrays self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) self.names = names # class names self.files = files # image filenames self.xyxy = pred # xyxy pixels self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized self.n = len(self.pred) # number of images (batch size) self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) self.s = shape # inference BCHW shape def display(self, pprint=False, show=False, save=False, render=False, save_dir=''): colors = color_list() for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' if pred is not None: for c in pred[:, -1].unique(): n = (pred[:, -1] == c).sum() # detections per class str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string if show or save or render: for *box, conf, cls in pred: # xyxy, confidence, class label = f'{self.names[int(cls)]} {conf:.2f}' plot_one_box(box, img, label=label, color=colors[int(cls) % 10]) img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np if pprint: print(str.rstrip(', ')) if show: img.show(self.files[i]) # show if save: f = Path(save_dir) / self.files[i] img.save(f) # save print(f"{'Saving' * (i == 0)} {f},", end='' if i < self.n - 1 else ' done.\n') if render: self.imgs[i] = np.asarray(img) def print(self): self.display(pprint=True) # print results print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) def show(self): self.display(show=True) # show results def save(self, save_dir='results/'): Path(save_dir).mkdir(exist_ok=True) self.display(save=True, save_dir=save_dir) # save results def render(self): self.display(render=True) # render results return self.imgs def __len__(self): return self.n def tolist(self): # return a list of Detections objects, i.e. 'for result in results.tolist():' x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)] for d in x: for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: setattr(d, k, getattr(d, k)[0]) # pop out of list return x class Classify(nn.Module): # Classification head, i.e. x(b,c1,20,20) to x(b,c2) def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups super(Classify, self).__init__() self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) self.flat = nn.Flatten() def forward(self, x): z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list return self.flat(self.conv(z)) # flatten to x(b,c2)