# parameters nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple # anchors anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # yolov5 backbone backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 1-P1/2 [-1, 1, Conv, [128, 3, 2]], # 2-P2/4 [-1, 3, Bottleneck, [128]], [-1, 1, Conv, [256, 3, 2]], # 4-P3/8 [-1, 9, BottleneckCSP, [256]], [-1, 1, Conv, [512, 3, 2]], # 6-P4/16 [-1, 9, BottleneckCSP, [512]], [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 6, BottleneckCSP, [1024]], # 10 ] # yolov5 head head: [[-1, 3, BottleneckCSP, [1024, False]], # 11 [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large) [-2, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 1, Conv, [512, 1, 1]], [-1, 3, BottleneckCSP, [512, False]], [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium) [-2, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 1, Conv, [256, 1, 1]], [-1, 3, BottleneckCSP, [256, False]], [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small) [[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]